1. Consider the series $\sum_{n=1}^{\infty} \frac{2^{n} x^{n}}{5^{n+1}}$.
(a) Rewrite this series (in summation notation) so that it is clear that this is a geometric series.
(b) What is the common ratio?
(c) Use the information you found above to determine for which values of x this series will converge.
2. Consider the series $\sum_{n=1}^{\infty} \frac{n x^{n}}{\sqrt{n+1}}$.
(a) Compute $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.
(b) From the information you found above, for what values of x do you know the series will converge?
(c) For what values of x were you not able to determine convergence or divergence? Check those values.
3. The set of values of x for which a series converges is called the interval of convergence. Find the interval of convergence for each of the following series.
(a) $\sum_{n=1}^{\infty} \frac{3^{n} x^{n}}{n^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{\sqrt{n}(x-3)^{n}}{4^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{n}}$
(d) $\sum_{n=1}^{\infty} \frac{x^{n}(n-1)!}{e^{n}}$
