1. Determine the interval of convergence for each of the following series.
(a) $\sum_{n=3}^{\infty} \frac{x^{n}}{5^{n} \ln n}$
(b) $\sum_{n=1}^{\infty} \frac{n(x-3)^{n}}{n+1}$
2. (a) The sum of a certain geometric series is $\frac{3}{4}$. What might the series be?
(b) The sum of a certain geometric series is $\frac{5}{1-2 x}$. What might the series be?
(c) Looking at the series you got from part 2 b , let $p_{4}(x)$ represent the polynomial you get if you remove all terms with degree greater than 4 . What is $p_{4}(x)$?
(d) Consider the function $f(x)=\frac{5}{1-2 x}$. Graph $f(x)$ and $p_{4}(x)$ on the same screen of your calculator. On what interval would you say $p_{4}(x)$ is a good approximation of $f(x)$?
3. (a) Find a series whose sum is $\frac{1}{1+3 x}$.
(b) Use your series above, and your knowledge of calculus, to find a series whose sum is $\ln |1+3 x|$.
(c) Let $p_{3}(x)$ be the polynomial you get if you remove all the terms from the above series with degree greater than 3 . What is $p_{3}(x)$.
(d) Graph $f(x)=\ln |1+3 x|$ and $p_{3}(x)$ on the same screen of your calculator. On what interval would you say $p_{3}(x)$ is a good approximation of $f(x)$?
4. Recall that the Maclaurin series for e^{x} is as follows.

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
$$

(a) Use the Maclaurin series for e^{x} to find the Maclaurin series for $\cosh x=\frac{e^{x}+e^{-x}}{2}$.
(b) Use your result from above to find the Maclaurin series for $\sinh x=\frac{e^{x}-e^{-x}}{2}$.

