1. Determine the interval of convergence for each of the following series.

(a)
$$\sum_{n=3}^{\infty} \frac{x^n}{5^n \ln n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n(x-3)^n}{n+1}$$

- 2. (a) The sum of a certain geometric series is $\frac{3}{4}$. What might the series be?
 - (b) The sum of a certain geometric series is $\frac{5}{1-2x}$. What might the series be?
 - (c) Looking at the series you got from part 2b, let $p_4(x)$ represent the polynomial you get if you remove all terms with degree greater than 4. What is $p_4(x)$?
 - (d) Consider the function $f(x) = \frac{5}{1-2x}$. Graph f(x) and $p_4(x)$ on the same screen of your calculator. On what interval would you say $p_4(x)$ is a good approximation of f(x)?
- 3. (a) Find a series whose sum is $\frac{1}{1+3x}$.
 - (b) Use your series above, and your knowledge of calculus, to find a series whose sum is $\ln |1 + 3x|$.
 - (c) Let $p_3(x)$ be the polynomial you get if you remove all the terms from the above series with degree greater than 3. What is $p_3(x)$.
 - (d) Graph $f(x) = \ln |1 + 3x|$ and $p_3(x)$ on the same screen of your calculator. On what interval would you say $p_3(x)$ is a good approximation of f(x)?
- 4. Recall that the Maclaurin series for e^x is as follows.

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

(a) Use the Maclaurin series for e^x to find the Maclaurin series for $\cosh x = \frac{e^x + e^{-x}}{2}$. (b) Use your result from above to find the Maclaurin series for $\sinh x = \frac{e^x - e^{-x}}{2}$.