1. Recall that the formula for the Maclaurin series is as follows.

$$
f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\cdots
$$

(a) Use this formula to find the Maclaurin series for $f(x)=\cos (2 x)$ through the degree 4 term.
(b) On a graphing calculator, graph both $f(x)=\cos (2 x)$ and the degree four Maclaurin polynomial that you found above. On what interval would you say the polynomial is a good approximation of $f(x)$?
(c) Recall that the Maclaurin series for $\cos x$ is as follows.

$$
\cos x=1-\frac{1}{2!} x^{2}+\frac{1}{4!} x^{4}-\frac{1}{6!} x^{6}+\cdots
$$

Use this to find the Maclaurin series for $f(x)=\cos (2 x)$. Does this match what you found in part 1a?
2. Find the Maclaurin series for the function $f(x)=(x+2)^{2}-3$.
3. The power series representation of $f(x)=\sqrt{1-x}$ is given below, and it converges for $-1<x<1$.

$$
\sqrt{1-x}=1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{1}{16} x^{3}-\frac{5}{128} x^{4}-\cdots-\frac{1 \cdot 3 \cdot 5 \cdots(2 n-3)}{n!2^{n}} x^{n}-\cdots
$$

(a) Using this series, find the first 4 terms in the power series for $-\frac{1}{2}(1-x)^{-\frac{1}{2}}$.
(b) Use this to find the first four nonzero terms in the power series for $\frac{1}{\sqrt{1-x^{2}}}$.
(c) Use this to find the first four nonzero terms in the power series for $\arcsin x$.
(d) Use this to find the first four nonzero terms in the power series for $\frac{\arcsin x}{x}$.
(e) Using what you have found thus far, find $\lim _{x \rightarrow 0} \frac{\arcsin x}{x}$.
(f) Check your answer to the above limit by using L'Hôpital's Rule.

