- 1. Consider the function $f(x) = \sin x$.
 - (a) Find the first four non-zero terms of the Taylor series for f(x) centered at $a = \frac{\pi}{2}$.
 - (b) Write the Taylor series for f(x) centered at $a = \frac{\pi}{2}$ in summation notation.
 - (c) Let $T_4(x)$ be the polynomial we get if we remove all terms with degree higher than 4 in the Taylor series. Graph $T_4(x)$ and f(x) on your graphing calculator. For what values of x would you say $T_4(x)$ is a good estimate of f(x)?
 - (d) Now graph $T_6(x)$ on the same set of axes as f(x). For what values of x would you say $T_6(x)$ is a good estimate of f(x)?
- 2. Consider the function $f(x) = \ln x$.
 - (a) Find the first five non-zero terms of the Taylor series for f(x) centered at a = 1.
 - (b) Write the Taylor series for f(x) centered at a = 1 in summation notation.
 - (c) Use $T_2(x)$ to estimate $\ln 1.1$.
 - (d) Plug $\ln(1.1)$ into your calculator. To how many decimal places was your estimate correct?
 - (e) If you want your estimate of $\ln(1.1)$ to be correct up to 6 decimal places, how many terms of the Taylor series would you need?
- 3. (a) Find the degree three Taylor polynomial for f(x) = ³√x, centered at a = 1.
 (b) Use this to estimate ³√0.5.
- 4. Find the area of the region bounded by $y = \sqrt{x-1}$ and y = x-1.
- 5. Determine whether the following integrals converge or diverge. If they converge, compute them.

(a)
$$\int_{1}^{\infty} \frac{1}{(2x+1)^{3}} dx$$

(b)
$$\int_{-\frac{1}{2}}^{1} \frac{1}{(2x+1)^{3}} dx$$

(c)
$$\int_{-1}^{-\frac{1}{2}} \frac{1}{(2x+1)^{3}} dx$$

(d)
$$\int_{-\infty}^{-1} \frac{1}{(2x+1)^{3}} dx$$