1. Consider the function $f(x)=\sin x$.
(a) Find the first four non-zero terms of the Taylor series for $f(x)$ centered at $a=\frac{\pi}{2}$.
(b) Write the Taylor series for $f(x)$ centered at $a=\frac{\pi}{2}$ in summation notation.
(c) Let $T_{4}(x)$ be the polynomial we get if we remove all terms with degree higher than 4 in the Taylor series. Graph $T_{4}(x)$ and $f(x)$ on your graphing calculator. For what values of x would you say $T_{4}(x)$ is a good estimate of $f(x)$?
(d) Now graph $T_{6}(x)$ on the same set of axes as $f(x)$. For what values of x would you say $T_{6}(x)$ is a good estimate of $f(x)$?
2. Consider the function $f(x)=\ln x$.
(a) Find the first five non-zero terms of the Taylor series for $f(x)$ centered at $a=1$.
(b) Write the Taylor series for $f(x)$ centered at $a=1$ in summation notation.
(c) Use $T_{2}(x)$ to estimate \ln 1.1.
(d) Plug $\ln (1.1)$ into your calculator. To how many decimal places was your estimate correct?
(e) If you want your estimate of $\ln (1.1)$ to be correct up to 6 decimal places, how many terms of the Taylor series would you need?
3. (a) Find the degree three Taylor polynomial for $f(x)=\sqrt[3]{x}$, centered at $a=1$.
(b) Use this to estimate $\sqrt[3]{0.5}$.
4. Find the area of the region bounded by $y=\sqrt{x-1}$ and $y=x-1$.
5. Determine whether the following integrals converge or diverge. If they converge, compute them.
(a) $\int_{1}^{\infty} \frac{1}{(2 x+1)^{3}} d x$
(b) $\int_{-\frac{1}{2}}^{1} \frac{1}{(2 x+1)^{3}} d x$
(c) $\int_{-1}^{-\frac{1}{2}} \frac{1}{(2 x+1)^{3}} d x$
(d) $\int_{-\infty}^{-1} \frac{1}{(2 x+1)^{3}} d x$
