Math 31 - Workshop \#5

Note: If your class is doing Techniques of Integration before Volumes, skip to problem number 4.

1. The region bounded by the graphs of $y=2+\sqrt{x}, y=2-x$, and $x=1$ is rotated about the x-axis. Find the volume of the resulting solid.

2. The region bounded by the graphs of $f(x)=\ln x, y=1$, the x-axis, and the y-axis is rotated about the y-axis. Find the volume of the resulting solid using the disk method. (Hint: Use horizontal rectangles.)
3. The region bounded by the graphs of $y=\ln x$ and the lines $y=x, y=0$, and $y=2$ is rotated about the y-axis. Find the volume of the resulting solid.
4. Integrate the following.
(a) $\int \frac{1}{2-5 x} d x$
(b) $\int_{0}^{\frac{\pi}{4}}(1+\tan x) \sec ^{2} x d x$
(c) $\int \frac{\sqrt{1+\cot x}}{\sin ^{2} x} d x$
5. Each of the following integrals represents the area of a region between two curves. Sketch the region.
(a) $\int_{1}^{e}(1-\ln x) d x$
(b) $\int_{\frac{3}{2}}^{3}\left[(7-2 x)-\frac{2}{x-1}\right] d x$
6. Consider the region bounded by the graphs of $y=\ln x, y=1, y=2$, and $x=0$.
(a) Set up a $d x$ integral that computes the area of this region.
(b) Set up a $d y$ integral that computes the area of this region.
