- 1. The number ONE identity in trigonometry is the Pythagorean Identity, which says $\cos^2 x + \sin^2 x = 1$. Divide both sides of the equation by $\cos^2 x$. After simplifying, what new identity do you get?
- 2. Consider the integral $\int \tan x \sec^2 x \, dx$.
 - (a) Explain why $u = \tan x$ is a possibly useful substitution.
 - (b) Use this substitution to compute the integral.
- 3. Consider the integral $\int \tan x \sec^4 x \, dx$. Use the substitution $u = \tan x$ to compute this integral.
- 4. Compute the following integrals.

(a)
$$\int \tan x \sin^2 x \, dx$$

(b)
$$\int \frac{\cos^5 x}{\sqrt{\sin x}} \, dx$$

(c)
$$\int \tan^3 x \, dx$$

(d)
$$\int \tan x \sin^2 x \, dx$$

5. The double angle identity for cosine is $\cos(2x) = \cos^2 x - \sin^2 x$.

- (a) Using the Pythagorean Identity, replace $\cos^2 x$ with $1 \sin^2 x$. Then solve this new equation for $\sin^2 x$.
- (b) Use what you did above to compute $\int \sin^4 x \, dx$.