Math 31 - Workshop \#9

1. The number ONE identity in trigonometry is the Pythagorean Identity, which says $\cos ^{2} x+\sin ^{2} x=1$. Divide both sides of the equation by $\cos ^{2} x$. After simplifying, what new identity do you get?
2. Consider the integral $\int \tan x \sec ^{2} x d x$.
(a) Explain why $u=\tan x$ is a possibly useful substitution.
(b) Use this substitution to compute the integral.
3. Consider the integral $\int \tan x \sec ^{4} x d x$. Use the substitution $u=\tan x$ to compute this integral.
4. Compute the following integrals.
(a) $\int \tan x \sin ^{2} x d x$
(b) $\int \frac{\cos ^{5} x}{\sqrt{\sin x}} d x$
(c) $\int \tan ^{3} x d x$
(d) $\int \tan x \sin ^{2} x d x$
5. The double angle identity for cosine is $\cos (2 x)=\cos ^{2} x-\sin ^{2} x$.
(a) Using the Pythagorean Identity, replace $\cos ^{2} x$ with $1-\sin ^{2} x$. Then solve this new equation for $\sin ^{2} x$.
(b) Use what you did above to compute $\int \sin ^{4} x d x$.
