1. Find the length of the curve $\overrightarrow{\mathbf{r}}(t)=\left\langle 2 e^{t}, e^{-t}, 2 t\right\rangle, 0 \leq t \leq 1$.
2. (a) Find the velocity, acceleration, and speed of the a particle with the position function $\overrightarrow{\mathbf{r}}(t)=\left\langle e^{2 t}, e^{-t}\right\rangle$.
(b) A portion of the graph of $\vec{r}(t)=\left\langle e^{2 t}, e^{-t}\right\rangle$ is given below. Carefully sketch the position, velocity, and acceleration vectors at $t=0$.

3. Find the velocity and position vectors of a particle that has the given acceleration and the specified initial velocity and position.
(a) $\overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{i}}-\overrightarrow{\mathbf{j}}+3 \overrightarrow{\mathbf{k}}, \vec{v}(0)=10 \overrightarrow{\mathbf{j}}, \vec{j}(0)=\overrightarrow{\mathbf{0}}$.
(b) $\overrightarrow{\mathbf{a}}(t)=9(\sin (3 t) \overrightarrow{\mathbf{i}}+\cos (3 t) \overrightarrow{\mathbf{j}})+4 \overrightarrow{\mathbf{k}}, \overrightarrow{\mathbf{v}}(0)=2 \overrightarrow{\mathbf{i}}-7 \overrightarrow{\mathbf{k}}, \overrightarrow{\mathbf{r}}(0)=3 \overrightarrow{\mathbf{i}}+4 \overrightarrow{\mathbf{j}}$.
4. Sketch the following regions in \mathbb{R}^{2}.
(a) $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 9\right.$, and $\left.y \geq-1\right\}$.
(b) $R=\{(x, y) \mid x>0$, and $x-y>1\}$.
