1. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
(a) $x^{4}+8 y^{3}-z^{2}=4$
(b) $8 y^{3} x^{4}-e^{z}=4$
2. A string is stretched along the x-axis, fixed at each end, and then set into vibration. It is shown in physics that the displacement $y=y(x, t)$ of the point of the string at location x at time t satisfies the one-dimensional wave equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

where the constant a depends on the density and tension of the string. Show that $y=\sin (k x) \cos (k a t)$, where k is a constant, satisfies this wave equation.
3. Find the equation of the tangent plane to the surface $f(x, y)=\frac{x}{x+y}$ at $(2,1)$. From this, find the linearization $L(x, y)$ of $f(x, y)$ at $(2,1)$.
4. Verify the linear approximation $\frac{2 x+3}{4 y+1} \approx 3+2 x-12 y$ at $(0,0)$.
5. Use differentials to estimate the amount of metal in a closed cylindrical can that is 8 cm high and 4 cm in diameter if the metal in the top and bottom is 0.2 cm thick and the metal in the sides is 0.05 cm thick.
6. The length and width of a rectangle are measured as 24 cm and 16 cm , respectively, with an error in measurement of at most 0.1 cm in each. Use differentials to estimate the maximum error in the calculated area of the rectangle.

