1. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. Introduce new variables as needed to show the composition and your use of the chain rule.

(a)
$$z = f(2x^2 + 4y)$$

(b) $z = f\left(\frac{x}{y}\right)$
(c) $z = f\left(xy, \frac{x}{y}\right)$

2. Consider the surface defined by the function $f(x, y) = 2x^2 + 3xy + 4y^2$. In what direction is the maximum rate of change? What is the actual maximum rate of change?

3. Set
$$f(x, y) = \sin(x) \cos(x)$$
.

- (a) Find the gradient of f. Is this a vector or a scalar? What notation is used to denote the gradient?
- (b) Find the directional derivative of f in the direction of $\vec{v} = \langle 4, -3 \rangle$ at the point $P\left(\frac{\pi}{3}, \frac{-2\pi}{3}\right)$. Is this a vector or a scalar? What notation is used to denote the directional derivative?