1. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. Introduce new variables as needed to show the composition and your use of the chain rule.
(a) $z=f\left(2 x^{2}+4 y\right)$
(b) $z=f\left(\frac{x}{y}\right)$
(c) $z=f\left(x y, \frac{x}{y}\right)$
2. Consider the surface defined by the function $f(x, y)=2 x^{2}+3 x y+4 y^{2}$. In what direction is the maximum rate of change? What is the actual maximum rate of change?
3. Set $f(x, y)=\sin (x) \cos (x)$.
(a) Find the gradient of f. Is this a vector or a scalar? What notation is used to denote the gradient?
(b) Find the directional derivative of f in the direction of $\vec{v}=\langle 4,-3\rangle$ at the point $P\left(\frac{\pi}{3}, \frac{-2 \pi}{3}\right)$. Is this a vector or a scalar? What notation is used to denote the directional derivative?
