1. We can describe the surface $2 x^{2}+4 y^{2}=45-z^{2}$ using by writing it as $F(x, y, z)=0$, where $F(x, y, z)=2 x^{2}+4 y^{2}+z^{2}-45$. We have a theorem that tells us that $\nabla F(x, y, z)$ is normal (perpendicular) to the surface. Use this fact to find the tangent plane to this surface at the point $(2,-3,1)$.
2. The following set of problems is about graphing regions in polar coordinates. Recall that represents distance from the origin (and maybe be negative, which denotes going in the opposite direction), and θ represents the angle with the positive x-axis in the counterclockwise direction (a negative angle represents the clockwise direction).

(a) Give three different ways to represent the point $(x, y)=(2,2)$ in polar coordinates (r, θ).
(b) Each of the circular regions have rings 1 unit apart, and the lines are drawn at the "standard" angles used in trigonometry. Graph the indicated regions.
i. $2<r \leq 5, \frac{3 \pi}{4} \leq \theta \leq \frac{5 \pi}{4}$
ii. $-1 \leq r \leq 1, \frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}$

3. Graph the set of points in \mathbb{R}^{2}.
(a) $1 \leq r \leq 2$
(b) $r \geq 1$
(c) $0 \leq \theta \leq \pi, r=1$
(d) $\theta=\frac{11 \pi}{4},-1 \leq r$
(e) $\frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}, 1 \leq r<2$
(f) $\frac{-\pi}{4}<\theta<\frac{\pi}{6}, 2 \leq r \leq 4$
(g) $\frac{-\pi}{2} \leq \theta \leq \frac{\pi}{6}, 0<r \leq 4$
(h) $\frac{-3 \pi}{4} \leq \theta \leq \frac{-\pi}{6}, r=8$
4. Give the polar equation(s) or inequalities that describe the checkered region. All angles are one of the "special angles" that we know from trigonometry.
a)

b)

c)

d)

