1. Find the center and the radius of the sphere by writing it in the form

$$(x-h)^{2} + (y-k)^{2} + (z-l)^{2} = r^{2},$$

and sketch the sphere.

- (a) $x^2 + y^2 + z^2 4x + 2y 6z = 130$
- (b) $2x^2 + 2y^2 + 2z^2 = 22 20x$
- 2. Write equations or inequalities \mathbb{R}^3 that describe the set of points. Sketch a picture.
 - (a) The solid rectangular region (a box!) in the first octant bounded by the coordinate planes and the planes x = 6, y = 1, z = 3.
 - (b) The outside of the sphere (no boundary) that has center (0, 1, -4) and is tangent to the xy-plane.
 - (c) The inside of the sphere with center at (-2, 5, 4) and passing through the point (0, 1, 0). What changes if we include the boundary?
 - (d) The sphere, and its inside, that has a diameter connecting the points (3, 5, -3) and (7, 3, 1).
- 3. The vector $\vec{\mathbf{v}} = \langle 2, 5 \rangle$ is in \mathbb{R}^3 and is the position vector for P(2, 5).
 - (a) Sketch this position vector starting at the origin.
 - (b) Sketch $\vec{\mathbf{v}}$ when it starts at the point (4, 1), and also when it starts at the point (-6, -2). In each case, where does it end?
 - (c) How many different places can this vector be drawn?
- 4. A vector $\vec{\mathbf{v}}$ in \mathbb{R}^3 has initial point (-2, 5, 4), and terminal point (3, 5, -3).
 - (a) Find \vec{v} in component form, and also in $\vec{i}, \vec{j}, \vec{k}$ -form.
 - (b) Find two unit vectors parallel to $\vec{\mathbf{v}}$.
 - (c) Find a vector of length 4 that is parallel to $\vec{\mathbf{v}}$.
- 5. We have two vectors in \mathbb{R}^3 , $\vec{\mathbf{v}} = \langle 1, 2, 3 \rangle$, $\vec{\mathbf{w}} = \langle -4, 1, -2 \rangle$. Compute the following.
 - (a) $\vec{\mathbf{v}} 3\vec{\mathbf{w}}$
 - (b) $|\vec{\mathbf{v}}|\vec{\mathbf{w}}$