Math 32 - Workshop \#2

1. Find the center and the radius of the sphere by writing it in the form

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

and sketch the sphere.
(a) $x^{2}+y^{2}+z^{2}-4 x+2 y-6 z=130$
(b) $2 x^{2}+2 y^{2}+2 z^{2}=22-20 x$
2. Write equations or inequalities \mathbb{R}^{3} that describe the set of points. Sketch a picture.
(a) The solid rectangular region (a box!) in the first octant bounded by the coordinate planes and the planes $x=6, y=1, z=3$.
(b) The outside of the sphere (no boundary) that has center $(0,1,-4)$ and is tangent to the $x y$-plane.
(c) The inside of the sphere with center at $(-2,5,4)$ and passing through the point $(0,1,0)$. What changes if we include the boundary?
(d) The sphere, and its inside, that has a diameter connecting the points $(3,5,-3)$ and $(7,3,1)$.
3. The vector $\overrightarrow{\mathbf{v}}=\langle 2,5\rangle$ is in \mathbb{R}^{3} and is the position vector for $P(2,5)$.
(a) Sketch this position vector starting at the origin.
(b) Sketch $\overrightarrow{\mathbf{v}}$ when it starts at the point $(4,1)$, and also when it starts at the point $(-6,-2)$. In each case, where does it end?
(c) How many different places can this vector be drawn?
4. A vector $\overrightarrow{\mathbf{v}}$ in \mathbb{R}^{3} has initial point $(-2,5,4)$, and terminal point $(3,5,-3)$.
(a) Find $\overrightarrow{\mathbf{v}}$ in component form, and also in $\overrightarrow{\mathbf{i}}, \overrightarrow{\mathbf{j}}, \overrightarrow{\mathbf{k}}$-form.
(b) Find two unit vectors parallel to $\overrightarrow{\mathbf{v}}$.
(c) Find a vector of length 4 that is parallel to $\overrightarrow{\mathbf{v}}$.
5. We have two vectors in $\mathbb{R}^{3}, \overrightarrow{\mathbf{v}}=\langle 1,2,3\rangle, \overrightarrow{\mathbf{w}}=\langle-4,1,-2\rangle$. Compute the following.
(a) $\overrightarrow{\mathbf{v}}-3 \overrightarrow{\mathbf{w}}$
(b) $|\overrightarrow{\mathbf{v}}| \overrightarrow{\mathbf{w}}$

