1. Change the order of integration by first sketching the region of integration. Then evaluate your integral, if possible.
(a) $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x$
(b) $\int_{0}^{9} \int_{-3}^{-\sqrt{y}} f(x, y) d x d y$
2. Use a double integral to setup an integral which represents the area of the region bounded by $y=$ $(x-1)^{2}, y=(x+1)^{2}$, and $y=0$. (Sketch the region!)
3. Use a double integral to setup an integral which represents the volume of the solid that lies below the surface $x+y+z=1$ and above the region bounded by $x=0, y=0$, and $x+y=1$. (Sketch the region!)
4. Use a double integral to setup an integral which represents the volume of the solid that lies inside the sphere $x^{2}+y^{2}+z^{2}=2$ and above the paraboloid $z=x^{2}+y^{2}$ (Sketch the region!). Evaluate your integral.
