1. Evaluate the integral by first sketching the region of integration, and then changing to polar coordinates: $\int_{-2}^{0} \int_{0}^{\sqrt{4-y^{2}}} \sin \left(x^{2}+y^{2}\right) d x d y$.
2. Using a double integral and polar coordinates to find the volume of the solid bounded by the paraboloids $z=12-2 x^{2}-y^{2}$ and $z=x^{2}+2 y^{2}$.
3. Cylindrical Coordinates consist of polar coordinates in the $x y$-plane, with the added height variable of z, so a point is denoted by (r, θ, z). Sketch a graph of the region describe by the following equations and inequalities in \mathbb{R}^{3}.
(a) $(r, \theta, z)=\left(2, \frac{-\pi}{3}, 5\right)$
(b) $\theta=\frac{\pi}{6}$
(c) $r=2$
(d) $0 \leq \theta \leq \frac{\pi}{4}$
(e) $0 \leq r \leq 2,2 \leq z \leq 5$
(f) $\frac{-3 \pi}{2} \leq \theta \leq \frac{-\pi}{2}, 0 \leq r \leq 3,-7 \leq z \leq-2$

