- 1. Evaluate the integral by first sketching the region of integration, and then changing to polar coordinates: $\int_{-2}^{0} \int_{0}^{\sqrt{4-y^2}} \sin(x^2 + y^2) \, dx \, dy.$
- 2. Using a double integral and polar coordinates to find the volume of the solid bounded by the paraboloids $z = 12 2x^2 y^2$ and $z = x^2 + 2y^2$.
- 3. Cylindrical Coordinates consist of polar coordinates in the xy-plane, with the added height variable of z, so a point is denoted by (r, θ, z) . Sketch a graph of the region describe by the following equations and inequalities in \mathbb{R}^3 .

(a)
$$(r, \theta, z) = \left(2, \frac{-\pi}{3}, 5\right)$$

(b) $\theta = \frac{\pi}{6}$
(c) $r = 2$
(d) $0 \le \theta \le \frac{\pi}{4}$
(e) $0 \le r \le 2, 2 \le z \le 5$
(f) $\frac{-3\pi}{2} \le \theta \le \frac{-\pi}{2}, 0 \le r \le 3, -7 \le z \le -2$

