1. Evaluate the integral.
(a) $\int_{0}^{\pi} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} z \sin x d y d z d x$
(b) $\int_{0}^{1} \int_{0}^{2} \int_{0}^{4-x^{2}-y^{2}} x y e^{z} d z d y d x$
2. There are two ways to represent the volume of the region E, which is bounded by the parabolic cylinder $y=x^{2}$, and the planes $y=z, y=9$, and $z=0$ (a partial graph of the region is given in the figure). Represent this volume using both a double integral and also using a triple integral. Use one of these to compute the actual volume.

3. We want to set up the integral $\iiint_{E} f(x, y, z) d V$, where E is the region bounded by the parabolic cylinder $y=x^{2}$, and the planes $y=z, y=9$, and $z=0$ (a partial graph of the region is given in the figure). Set up this integral as a $d x d y d z$ integral and also as a $d x d z d y$ integral.

