- 1. Sketch the region bounded by the paraboloids $z = x^2 + y^2$ and $z = 36 3x^2 3y^2$. Use cylindrical coordinates to find the volume of this region.
- 2. Evaluate by first changing to cylindrical coordinates. (Sketch the region of integration!)

$$\int_{0}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} \int_{0}^{16-x^{2}-y^{2}} (x^{2}+y^{2}) \, dz \, dy \, dx$$

3. Sketch the solid whose volume is given by the integral and evaluate.

$$\int_0^{\pi} \int_{\frac{\pi}{2}}^{\pi} \int_1^2 \rho^2 \sin \phi \, d\rho d\phi d\theta$$

4. Evaluate $\iiint_E (x^2 + y^2 + z^2) dV$ using spherical coordinates, where E is the region between the two π

spheres $\rho = 2$ and $\rho = 4$ and above the cone $\phi = \frac{\pi}{3}$ in the first quadrant.

5. Using spherical coordinates, find the volume of the part of the sphere of radius 9 which is inside the sphere, between the cones $\phi = \frac{\pi}{3}$ and $\phi = \frac{\pi}{6}$, and behind the *yz*-plane.