1. Sketch the region bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=36-3 x^{2}-3 y^{2}$. Use cylindrical coordinates to find the volume of this region.
2. Evaluate by first changing to cylindrical coordinates. (Sketch the region of integration!)

$$
\int_{0}^{4} \int_{-\sqrt{16-x^{2}}}^{\sqrt{16-x^{2}}} \int_{0}^{16-x^{2}-y^{2}}\left(x^{2}+y^{2}\right) d z d y d x
$$

3. Sketch the solid whose volume is given by the integral and evaluate.

$$
\int_{0}^{\pi} \int_{\frac{\pi}{2}}^{\pi} \int_{1}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

4. Evaluate $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d V$ using spherical coordinates, where E is the region between the two spheres $\rho=2$ and $\rho=4$ and above the cone $\phi=\frac{\pi}{3}$ in the first quadrant.
5. Using spherical coordinates, find the volume of the part of the sphere of radius 9 which is inside the sphere, between the cones $\phi=\frac{\pi}{3}$ and $\phi=\frac{\pi}{6}$, and behind the $y z$-plane.
