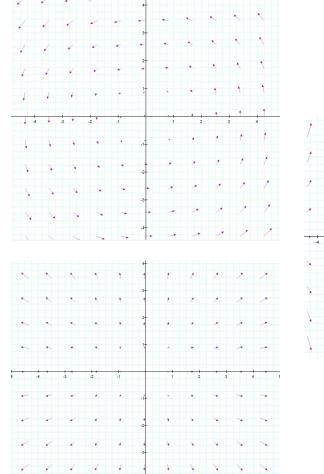
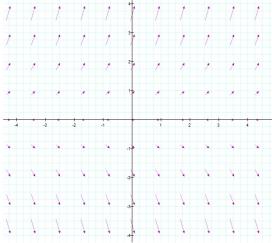
- 1. Set $\vec{\mathbf{r}}(t) = \langle \cos(t), \sin(t) \rangle$.
 - (a) Sketch a graph of $\vec{\mathbf{r}}(t)$ in \mathbb{R}^2 . If a particle is moving along this path, in what direction is it moving?
 - (b) On your graph, sketch $\vec{\mathbf{r}}\left(\frac{\pi}{4}\right)$. (Don't forget how the derivative should be graphed!)
 - (c) Compute $\vec{\mathbf{r}}\left(\frac{\pi}{4}\right) \cdot \vec{\mathbf{r}}'\left(\frac{\pi}{4}\right)$. What does this tell you about the relationship between these vectors? (Note that this is not always the case for a general curve, this curve is special.)
- 2. Sketch three different representations of the vector. (*Each answer should look like a picture with three vectors starting at different initial points.*)
 - (a) $\vec{\mathbf{v}} = 4\vec{\mathbf{i}} 2\vec{\mathbf{j}}$
 - (b) $\vec{\mathbf{w}} = \langle 1, 2, 3 \rangle$
- 3. Sketch a few of the vectors given by the vector function and determine which vector field matches the function.
 - (a) $\vec{\mathbf{F}}(x,y) = \vec{\mathbf{i}} + y\vec{\mathbf{j}}$

(b)
$$\vec{\mathbf{F}}(x,y) = x\vec{\mathbf{i}} + y\vec{\mathbf{j}}$$

(c) $\vec{\mathbf{F}}(x,y) = -y\vec{\mathbf{i}} + x\vec{\mathbf{j}}$





- 4. Sketch a few of the vectors given by the vector function and determine which vector field matches the function.
 - (a) $\vec{\mathbf{F}}(x,y,z) = \vec{\mathbf{i}} + y\vec{\mathbf{j}} + z\vec{\mathbf{k}}$
 - (b) $\vec{\mathbf{F}}(x, y, z) = \frac{1}{x}\vec{\mathbf{i}} + 2\vec{\mathbf{j}} + z\vec{\mathbf{k}}$ (c) $\vec{\mathbf{F}}(x, y, z) = 7\vec{\mathbf{j}}$

