1. Evaluate the line integral $\int_{C} y^{2} d x$, where C is the line connecting the points $(-3,-1)$ and $(5,9)$.
2. Evaluate the line integral $\int_{C} z d x+\sin x d y+3 x^{2} d z$, where $C: x=t, y=t^{2}, z=e^{t}, 0 \leq t \leq 1$.
3. Recall that arc length in the plane is given by

$$
s\left(t_{0}\right)=\int_{a}^{t_{0}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

and from this we have that

$$
\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

using t as the parameter. Using differentials, we can write this as

$$
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

and we can integrate a function $f(x, y)$ above a curve C in the plane using

$$
\int_{a}^{b} f(x, y) d s=\int_{a}^{b} f(x, y) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

This can be extended to higher dimensions.
Use this to compute $\int_{C} y e^{z} d s$, where C is the circular helix $x=\cos t, y=\sin t, z=t, 0 \leq t \leq 2 \pi$.

