- 1. Which of the following expression are meaningless (i.e. not defined)? For those that are meaningful (i.e. defined), state whether the expression is a scalar or a vector.
 - (a) $\frac{1}{|\vec{\mathbf{v}}|}\vec{\mathbf{w}}$
 - (b) $|\vec{\mathbf{v}}| \frac{1}{\vec{\mathbf{w}}}$
 - (c) $\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}$
 - (d) $|\vec{\mathbf{v}}| \cdot \vec{\mathbf{w}}$
 - (e) $(|\vec{\mathbf{v}}| + 4)\vec{\mathbf{w}}$
- 2. We have two vectors in \mathbb{R}^2 , $\vec{\mathbf{v}} = \langle 9, 3 \rangle$ and $\vec{\mathbf{w}} = \langle 1, 5 \rangle$.
 - (a) Carefully sketch these vectors. Find an expression for $\cos \theta$, where θ is the angle between $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$.
 - (b) On your picture, where is the projection of $\vec{\mathbf{w}}$ onto $\vec{\mathbf{v}}$? Sketch where it is on your picture.
 - (c) Find a unit vector in the direction of this projection. What is this unit vector also parallel to?
 - (d) Using trigonometry, what is the length of this projection?
 - (e) Any vector can be expressed as a scalar multiplication:

 $(length of vector) \cdot (unit vector in the direction of that vector).$

Use this, and your work above, to find the vector that represents the projection of \vec{w} onto \vec{v} .

- 3. We have two vectors in \mathbb{R}^3 , $\mathbf{v} = \langle 1, 3, 2 \rangle$ and $\mathbf{w} = \langle -4, 2, 1 \rangle$. Use only the dot product in this problem.
 - (a) Prove or disprove: $\vec{\mathbf{v}} \perp \vec{\mathbf{w}}$.
 - (b) There is a long way and a short way to do part (a), what are they?
 - (c) Prove or disprove: $\vec{\mathbf{v}} \parallel \vec{\mathbf{w}}$.