1. Which of the following expression are meaningless (i.e. not defined)? For those that are meaningful (i.e. defined), state whether the expression is a scalar or a vector.
(a) $|\overrightarrow{\mathbf{v}}| \times \overrightarrow{\mathbf{w}}$
(b) $(|\overrightarrow{\mathbf{v}}| \overrightarrow{\mathbf{v}}) \times \overrightarrow{\mathbf{v}}$
(c) $(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}) \times \overrightarrow{\mathbf{w}}$
(d) $(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{v}}) \times \overrightarrow{\mathbf{w}}$
2. We have two vectors in $\mathbb{R}^{3}, \overrightarrow{\mathbf{v}}=\langle 1,3,2\rangle$ and $\overrightarrow{\mathbf{w}}=\langle-1,-1,4\rangle$. Find three vectors that are perpendicular to both $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$. How many unit vectors are there that are perpendicular to both $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$? Find all such unit vectors.
3. Set $\overrightarrow{\mathbf{v}}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\overrightarrow{\mathbf{w}}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$. Verify the property $(2 \overrightarrow{\mathbf{v}}) \times \overrightarrow{\mathbf{w}}=2(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$. Also verify the property $(2 \overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{w}}=2(\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}})$. Work from left to right for verifications. (These are examples of the general properties $(c \overrightarrow{\boldsymbol{v}}) \times \overrightarrow{\boldsymbol{w}}=c(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{w}})$ and $(c \overrightarrow{\boldsymbol{v}}) \cdot \overrightarrow{\boldsymbol{w}}=c(\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{w}})$, where c is a scalar. These properties allow us to simplify computations.)
4. Set $\overrightarrow{\mathbf{v}}=\langle 1,3,2\rangle$ and $\overrightarrow{\mathbf{w}}=\langle-1,-1,4\rangle$, and let θ be the angle between these two vectors.
(a) Find an expression for $\cos \theta$ and also for $\sin \theta$.
(b) What is the quickest way to determine if these two vectors are perpendicular?
(c) What is the quickest way to determine if these two vectors are parallel?
