- 1. Which of the following expression are meaningless (i.e. not defined)? For those that are meaningful (i.e. defined), state whether the expression is a scalar or a vector.
 - (a) $|\vec{\mathbf{v}}| \times \vec{\mathbf{w}}$
 - (b) $(|\vec{\mathbf{v}}|\vec{\mathbf{v}}) \times \vec{\mathbf{v}}$
 - (c) $(\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}) \times \vec{\mathbf{w}}$
 - (d) $(\vec{\mathbf{v}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{w}}$
- 2. We have two vectors in \mathbb{R}^3 , $\vec{\mathbf{v}} = \langle 1, 3, 2 \rangle$ and $\vec{\mathbf{w}} = \langle -1, -1, 4 \rangle$. Find three vectors that are perpendicular to both $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$. How many unit vectors are there that are perpendicular to both $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$? Find all such unit vectors.
- 3. Set $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$ and $\vec{\mathbf{w}} = \langle w_1, w_2, w_3 \rangle$. Verify the property $(2\vec{\mathbf{v}}) \times \vec{\mathbf{w}} = 2(\vec{\mathbf{v}} \times \vec{\mathbf{w}})$. Also verify the property $(2\vec{\mathbf{v}}) \cdot \vec{\mathbf{w}} = 2(\vec{\mathbf{v}} \cdot \vec{\mathbf{w}})$. Work from left to right for verifications. (These are examples of the general properties $(c\vec{\mathbf{v}}) \times \vec{\mathbf{w}} = c(\vec{\mathbf{v}} \times \vec{\mathbf{w}})$ and $(c\vec{\mathbf{v}}) \cdot \vec{\mathbf{w}} = c(\vec{\mathbf{v}} \cdot \vec{\mathbf{w}})$, where c is a scalar. These properties allow us to simplify computations.)
- 4. Set $\vec{\mathbf{v}} = \langle 1, 3, 2 \rangle$ and $\vec{\mathbf{w}} = \langle -1, -1, 4 \rangle$, and let θ be the angle between these two vectors.
 - (a) Find an expression for $\cos \theta$ and also for $\sin \theta$.
 - (b) What is the quickest way to determine if these two vectors are perpendicular?
 - (c) What is the quickest way to determine if these two vectors are parallel?