1. Sketch the part of the circle given by the parameterization. Be sure to denote direction, as well as the initial and terminal points.
(a) $\overrightarrow{\mathbf{r}}=\langle\cos (t), \sin (t)\rangle, \quad \frac{3 \pi}{4} \leq t \leq \frac{7 \pi}{4}$
(b) $\overrightarrow{\mathbf{r}}=\langle\cos (2 t), \sin (2 t)\rangle, \quad \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$
(c) $\overrightarrow{\mathbf{r}}=\left\langle\cos \left(\frac{t}{2}\right), \sin \left(\frac{t}{2}\right)\right\rangle, \quad \frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$
2. Find the domain of $\overrightarrow{\mathbf{r}}=\left\langle\sqrt{t+7}, \ln (9-t), \frac{1}{3 t-6}\right\rangle$ and sketch it on a number line.
3. Show that the curve with parametric equations $x=4 \sin t, y=4 \cos t, z=\sin ^{2} t$ lies on the intersection of $16 z=x^{2}$ and $x^{2}+y^{2}=16$.
4. Do the following paths intersect? Do particles traveling along the paths collide? Find any points of intersection, or collision points.
(a) $\overrightarrow{\mathbf{q}}=5 t \overrightarrow{\mathbf{i}}+(t-3) \overrightarrow{\mathbf{j}}+\left(t^{2}+1\right) \overrightarrow{\mathbf{k}}$

$$
\overrightarrow{\mathbf{r}}=t^{2} \overrightarrow{\mathbf{i}}+(2 t-8) \overrightarrow{\mathbf{j}}+(4 t+6) \overrightarrow{\mathbf{k}}
$$

(b) $\overrightarrow{\mathbf{q}}=(t+4) \overrightarrow{\mathbf{i}}+(2 t+1) \overrightarrow{\mathbf{j}}+t^{2} \overrightarrow{\mathbf{k}}$

$$
\overrightarrow{\mathbf{r}}=3 t \overrightarrow{\mathbf{i}}+(7-t) \overrightarrow{\mathbf{j}}+t^{3} \overrightarrow{\mathbf{k}}
$$

