1. The graph of $\vec{\mathbf{r}}(t) = e^t \vec{\mathbf{i}} + e^{-t} \vec{\mathbf{j}}$ is given. Carefully sketch $\vec{\mathbf{r}}(t_0)$ and $\vec{\mathbf{r}}'(t_0)$ for $t_0 = 0$.

- 2. Find the parametric equations for the line that contains (2, -3, 1) and (5, 0, 4). Use your answer to give the parametric equations for the *line segment* that connects these points.
- 3. Find the parametric equations for the line tangent to $\vec{\mathbf{r}}(t) = \left\langle \frac{4}{t}, \sqrt{t+2}, 3t^2 \right\rangle$ at the point (2, 2, 12).
- 4. Find the indicated derivative.

(a) Find
$$\vec{\mathbf{r}}'(t)$$
 if $\vec{\mathbf{r}}(t) = \left\langle \cos(4t^2), e^{4t^2}, \frac{1}{4t^2} \right\rangle$
(b) Find $\vec{\mathbf{r}}'(2)$ if $\vec{\mathbf{r}}(t) = \tan^{-1}(t)\vec{\mathbf{i}} + \sqrt{3t^2 + 4}\vec{\mathbf{j}} + \ln(3t + 6)\vec{\mathbf{k}}$

5. Evaluate the integral.

(a)
$$\int \left(\sec t \tan t \, \vec{\mathbf{i}} + \frac{t}{1+t^2} \, \vec{\mathbf{j}} + e^{16t} \, \vec{\mathbf{k}}\right) dt$$

(b)
$$\int_0^1 \left(\frac{t^3}{\sqrt{1+4t^4}} \, \vec{\mathbf{i}} + \frac{1}{1+t^2} \, \vec{\mathbf{j}} + te^{16t} \, \vec{\mathbf{k}}\right) dt$$