1. The graph of $\overrightarrow{\mathbf{r}}(t)=e^{t} \overrightarrow{\mathbf{i}}+e^{-t} \overrightarrow{\mathbf{j}}$ is given. Carefully sketch $\overrightarrow{\mathbf{r}}\left(t_{0}\right)$ and $\overrightarrow{\mathbf{r}}^{\prime}\left(t_{0}\right)$ for $t_{0}=0$.

2. Find the parametric equations for the line that contains $(2,-3,1)$ and $(5,0,4)$. Use your answer to give the parametric equations for the line segment that connects these points.
3. Find the parametric equations for the line tangent to $\overrightarrow{\mathbf{r}}(t)=\left\langle\frac{4}{t}, \sqrt{t+2}, 3 t^{2}\right\rangle$ at the point $(2,2,12)$.
4. Find the indicated derivative.
(a) Find $\overrightarrow{\mathbf{r}}^{\prime}(t)$ if $\overrightarrow{\mathbf{r}}(t)=\left\langle\cos \left(4 t^{2}\right), e^{4 t^{2}}, \frac{1}{4 t^{2}}\right\rangle$
(b) Find $\overrightarrow{\mathbf{r}}^{\prime}(2)$ if $\overrightarrow{\mathbf{r}}(t)=\tan ^{-1}(t) \overrightarrow{\mathbf{i}}+\sqrt{3 t^{2}+4} \overrightarrow{\mathbf{j}}+\ln (3 t+6) \overrightarrow{\mathbf{k}}$
5. Evaluate the integral.
(a) $\int\left(\sec t \tan t \overrightarrow{\mathbf{i}}+\frac{t}{1+t^{2}} \overrightarrow{\mathbf{j}}+e^{16 t} \overrightarrow{\mathbf{k}}\right) d t$
(b) $\int_{0}^{1}\left(\frac{t^{3}}{\sqrt{1+4 t^{4}}} \overrightarrow{\mathbf{i}}+\frac{1}{1+t^{2}} \overrightarrow{\mathbf{j}}+t e^{16 t} \overrightarrow{\mathbf{k}}\right) d t$
