Always explain your answers and show your work.

Problem 1 - The figure shows a simple model of a seesaw. These consist of a plank/rod of mass $m_r = 10 \ kg$ and length 2x allowed to pivot freely about its center (or central axis), as shown in the diagram. Two children are modelled as small spheres of masses $m_1 = 30 \ kg$ and $m_2 = 50 \ kg$ as shown.

- A. Where is the center of mass of the assembly?
- B. What is the moment of inertia of the seesaw through the axis that goes through the middle of the plank?

Problem 2 - A solid cylinder with a radius of 4.1 cm has the same mass as a solid sphere of radius R. If the cylinder and sphere have the same moment of inertia about their centers, what is the sphere's radius? *Hint: the moment of inertia of a cylinder about the center is* $I = \frac{1}{2}MR^2$, and the moment of inertia of a solid sphere is $I = \frac{2}{5}MR^2$

Problem 3 - A string is wrapped around a uniform solid cylinder of radius r, as shown in The figure shows a cylinder of mass m and radius r that can rotate about its horizontal axis. A string is wrapped around the cylinder. A block of mass m is hanging from the free end of the string. The cylinder can rotate freely about its axis. The loose end of the string is attached to a block. The block and cylinder each have mass m.

Find the magnitude α of the angular acceleration of the cylinder as the block descends.

