Always explain your answers and show your work.

Problem 1 - What is the mass, in u, of a molecule of water, H_2O ?

Problem 2 - A rigid container holds both hydrogen gas (H₂) and nitrogen gas (N₂) at 100°C. What is the ratio $(v_{rms} of H_2)/(v_{rms} of N_2)$?

Problem 3 - Two cylinders, A and B, contain the same type of gas at the same temperature. Cylinder A has three times the volume of cylinder B and contains half as many molecules as cylinder B. What is the ratio p_B/p_A ?

Problem 4 - An adult inhales about 4 L of fresh air during a breath. Assume the pressure in the lungs is 1 atm and the air is at a chilly temperature of $10 \, {}^{o}C$.

- A. Only 20% of fresh air is oxygen. How many oxygen molecules are in each breath?
- B. If you hold the volume of your lungs constant (a good approximation) and the number of molecules in your lungs stays constant as well (also a good approximation), what is the increase in pressure inside your lungs as you warm up the air to your body temperature of 37 °C?

Problem 5 - $0.0040 \text{ mol of H}_2$ undergoes the process shown in the figure.

- A. What type of process is this?
- B. What is the initial temperature?
- C. What is the final temperature?

Imagine that next we allow the gas to expand. The gas keeps its pressure constant at 1 atm but the volume increases to 300 cm^3 .

- D. What type of process is this?
- E. How much work does the gas do in this process?
- F. What is the final temperature of the gas?
- G. Is this an adiabatic process? Clearly explain.

