

Stat 1 Pal Worksheet 8: Conditional Probabilities and Independent Events

Name _____

1. Consider the experiment of selecting at random a student from CSUS. Consider also the events B = the randomly selected student is a basketball player, and T = the event the randomly selected student is six feet or taller.

$P(T)$ =the probability that the student behind the door is six feet or taller. The given probability for $P(T)$ is .15 meaning 15% of CSUS students are six feet or taller.

a.) What is the probability that the student is six feet or taller *given* that the student is a basketball player? This probability is called *conditional probability* and is denoted $P(T|B)$. Would your answer for $P(T|B)$ be smaller, equal, or larger than the given value of $P(T)$ above?

2. Obtain the following prior and posterior probabilities to decide if two events are independent.

a.) T = event that student is six feet or taller

I = event that student owns an i-phone.

$P(T) =$

$P(T|I) =$

Are events T and I independent? Articulate your answer with a formal sentence.

b.) Consider the experiment of tossing a fair die. Consider also the events A = the number two comes up, and B = an even number comes up.

-Obtain $P(A)$ and write a sentence articulating what $P(A)$ stands for:

-Obtain $P(A|B)$ and write a sentence articulating what $P(A|B)$ stands for:

Are A and B independent? Write a sentence articulating your answer.

3. In the previous worksheet you learned that the following contingency table represents the gender and year in college of a classroom with 30 students:

	Freshman	Sophomore	Junior	Senior	Column Totals
Male	2	0	9	1	12
Female	4	6	5	3	18
Row Totals	6	6	14	4	30

A student is selected at random from this class:

Let F = event that randomly selected student is a female.

Let M = event that randomly selected student is a male.

Let Fr = event that randomly selected student is a freshman.

Let So = event that randomly selected student is a sophomore.

Let Jr = event that randomly selected student is a junior.

Let Sr = event that randomly selected student is a senior.

a.) Obtain $P(F|Jr)$ and write the reasoning to explain.

b.) Obtain $P(Jr|F)$ and write the reasoning to explain.

c.) Now obtain the prior probability $P(Jr)$ to verify if events Jr and F are independent. Justify your answer with an articulate sentence.

d.) Obtain $P(M|So)$ and write the reasoning to explain.

e.) Now obtain the prior probability $P(M)$ to verify if events M and So are independent. Justify your answer with an articulate sentence.

f.) Obtain $P(Sr|F)$ and write the reasoning using the events involved in this probability.

4. The conditional probability $P(A|B)$ can be written as the ratio of the two non-conditional probabilities. $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Rewrite the conditional probabilities you obtain in Question 3 (b, d, and f) above as the ratio.

a.)

b.)

c.)

5. Forty percent of freshmen at a university said that they are taking a mathematics course, and 50 percent of them said that they are taking a writing course. 20 percent of them are taking both a mathematics and a writing course. A freshman is selected at random from this university. Let M = the event that the randomly selected student is taking a mathematics course, and W = the event that the randomly selected student is taking a writing course.

i. $P(M) =$

ii. $P(W) =$

iii. $P(M \cap W) =$

a.) Among freshmen taking a mathematics course, what proportion is also taking a writing course?

b.) If a randomly selected student is taking a writing course, what is the probability that he or she is also taking a mathematics course?

c.) Draw a Venn Diagram to help you visualize $P(M \cap W)$ (the probability that the randomly selected student is taking both a mathematics and a writing course)

d.) Obtain $P(M \cup W)$ using the Venn Diagram from part c together with the Addition Rule

e.) What proportion of freshmen is taking a mathematics course but not a writing course? How would you denote this **event** and this **proportion**?

f.) What proportion of freshmen is taking a writing course but not a mathematics course? How would you denote this **event** and this **proportion**?