MATH 104 : VECTOR ANALYSIS

California State University, Sacramento • Department of Mathematics & Statistics

This is a one-semester upper division course that is taught only in the spring. It is a continuation of the topics in Math 32 and is highly recommended for all math majors whose concentration is in Applied Math. It is also recommended for Physics and Engineering majors.

CATALOG DESCRIPTION

Vector and scalar fields, integral theorems, orthogonal curvilinear coordinates, vector spaces and linear transformations, applications to physical fields and operators. **Graded**: Graded Student. **Units**: 3.0.

Prerequisites

Math 32

Assignments

A variety of reading and problem solving assignments will be part of the course.

EXAMINATIONS

There will be regular midterm examinations and a comprehensive final examination for this course.

COURSE OUTLINE

I. Vector Algebra (3-4 Weeks)

A. Definitions

- B. Addition and subtraction
- C. Scalar multiplication
- D. Applications in geometry
- E. Equations of a line
- F. Dot product
- G. Equation of a plane
- H. Cross product
- I. Triple scalar product
- II. Vector Functions of a Single Variable (2-3 Weeks)
 - A. Differentiation
 - B. Curves, velocities, and tangents
 - C. Acceleration and curvature
 - D. Planar motion in polar coordinates
- III. Scalar and Vector Fields (3 Weeks)

- A. Level surfaces
- B. Gradient
- C. Vector fields and flow lines
- D. Divergence
- E. Curl
- F. Laplacian
- IV. Integration (5 Weeks)
 - A. Line integrals
 - B. Domains
 - C. Conservative fields
 - D. Oriented surfaces
 - E. Surface integrals
 - F. Volume integrals
 - G. Divergence Theorem
 - H. Green's Theorem
 - I. Stoke's Theorem
- V. Additional topics (time permitting, 1-2 weeks)
 - A. Cylindrical and spherical coordinates
 - B. Orthogonal curvilinear coordinates