MATH 210AB : Algebraic Structures

California State University, Sacramento \cdot Department of Mathematics & Statistics

General algebraic systems and concepts; groups; rings; fields; vector speaces; Galois theory. Sequence begins every other Fall.

CATALOG DESCRIPTION

(210A) General algbraic systems and concepts; groups. (210B) Fields; vector spaces; Galois theory. Graded: Graded Student. Units: 3.0.

Prerequisites

(210A) Math 110B. (210B) Math 210A is prerequisite to Math 210B.

COURSE OUTLINE

- I. Group Theory
 - A. Definition and examples
 - B. Subgroups and Lagrange's theorem
 - C. Normal subgroups, qotient groups and homomorphisms
 - D. Automorphisms
 - E. Permutation groups and Cayley's theorem
 - F. Group actions
 - G. Class equation
 - H. Sylow's theorem
 - I. Direct products
 - J. Fundamental theorem of finite abelian groups
- II. Ring Theory
 - A. Definition and examples
 - B. Ideals, quotient rings and homomorphisms
 - C. Maximal and prime ideals
 - D. Field of quotients of an integral domain
 - E. Euclidean rings
 - F. Principal ideal rings
 - G. Polynomial rings
- III. Vector Spaces
 - A. Definition and examples
 - B. Linear independence and bases

- C. Dual spaces 1
- D. Inner product spaces 1
- IV. Field Theory
 - A. Extension Fields
 - B. Roots of polynomials and splitting fields
 - C. Construction with straightedge and compass
 - D. Galois theory
 - E. Solvability by radicals

The written exam in Algebra will cover the contenet of the non-optional sections of this outline.

References

- Topics in Algebra, by Herstein
- Basic Algebra I, by Jocobsen, Dummit, & Foote