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Photonic systems are the leading candidates for deterministic quantum sources, quantum 
repeaters, and other key devices for quantum information processing. Scalability of this 
technology depends on the stability, homogeneity and coherence properties of quantum 
emitters. Here, color centers in wide band gap materials offer favorable properties for 
applications in quantum memories, single-photon sources, quantum sensors, and spin-
photon interfaces [1,2]. Silicon carbide, in particular, has been an attractive commercial host 
of color centers featuring fiber-compatible single photon emission, long spin-coherence 
times and nonlinear optical properties [3]. Integration of color centers with nanophotonic 
devices has been a challenging task, but significant progress has been made with 
demonstrations up to 120-fold resonant emission enhancement of emitters embedded in 
photonic crystal cavities [4]. A novel direction in overcoming the integration challenge has 
been the development of triangular photonic devices, recently shown to preserve 
millisecond-scale spin-coherence in silicon carbide defects [5,6]. Triangular photonics has 
promising applications in quantum networks, integrated quantum circuits, and quantum 
simulation. Here, open quantum system modeling provides insights into polaritonic physics 
achievable with realistic device parameters through evaluation of cavity-protection, 
localization and phase transition effects [7]. Mapping of this dynamics to gate-based 
quantum circuits opens door for quantum advantage in understanding cavity quantum 
electrodynamical (QED) effects using commercial Noisy Intermediate-Scale Quantum (NISQ) 
hardware [8]. 
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