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Executive Summary 

My Culminating Project presents original research that examines whether exposure to various 

forms of environmental pollution had a negative impact on the average standardized test performance for 

6th graders at California public school districts from 2009-2018. Public health research suggests that 

children exposed to certain types of pollution (such as fine particulate matter in ambient air or toxic heavy 

metals in drinking water) may suffer from impaired brain development or chronic conditions such as 

asthma that are exacerbated when pollution levels are high. Relative to their peers who do not experience 

these environmental stressors, students with pollution-induced health conditions may face attendance 

issues and struggle to focus, learn, and demonstrate their knowledge on test day. My research assesses 

whether these adverse health outcomes are resulting in measurable learning loss across the population.  

I apply a fixed-effects panel regression analysis to examine the effect of selected pollution 

variables on average school district test scores for math and English Language Arts (ELA). My analysis 

connects test score data and school district covariates from the Stanford Education Data Archive (SEDA) 

with Census tract pollution scores from CalEnviroScreen (CES), a tool used by California state agencies 

to identify pollution burdens and prioritize investment of environmental program funds. To assemble my 

model, I used GIS mapping to match every California public school in the SEDA dataset to the 

appropriate Census tract, and then used corresponding school pollution scores to derive district averages. 

With nine years of test score data and three iterations of pollution data that cover similar time periods, I 

was able to assemble a panel model with school district and year fixed effects that account for more of the 

overall variation in test scores than is possible with a single-year cross-sectional regression.  

My analysis focuses on the following subset of CES pollution variables to identify any 

measurable impacts on standardized test scores: Fine Particulate Matter (PM 2.5), Traffic, Toxic Cleanup 

Sites, Hazardous Waste Facilities, Solid Waste Facilities (including landfills), Impaired Water Bodies, 

and Groundwater Threats (a collection of pollution sources which may have water quality impacts). Of 

these seven pollution variables, I find a small but meaningful effect on standardized test scores from PM 
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2.5, Solid Waste Facilities, and Groundwater Threats. I do not find statistically significant relationships 

for the other pollution variables, despite some theoretical support for the effect of these variables in public 

health literature. My results are robust to a number of adjusted regression specifications and include 

important statistical corrections for multicollinearity and heteroskedasticity. However, I also find that 

these effects depend on the test subject, and appear to also vary based on levels of certain geographic and 

demographic indicators. Future research is needed to investigate these differing effects and to further 

explore the complex web of causal mechanisms that connect various forms of pollution exposure to 

academic outcomes.  

While my results for Solid Waste Facilities and Groundwater Threats appear to be largely novel 

findings, the effect I find for PM 2.5 is supported by existing research that connects test score 

performance with poor air quality. Some of these prior studies take a time-dependent, quasi-experimental 

approach to show that both short- and long-term PM 2.5 exposure harms test performance, and that 

mitigating pollution exposure produces immediate benefits (i.e., the physical and cognitive harms from 

PM 2.5 are largely reversible). This dynamic suggests that policy intervention to improve classroom air 

quality may be an effective tool to boost student achievement. In fact, prior studies such as Gilraine 

(2020) and Stafford (2015) suggest that the per-dollar test-score benefits of classroom air filtration exceed 

more commonly prescribed educational interventions such as class-size reduction programs. The 

magnitude of the effect I find for PM 2.5 similarly supports this conclusion.  

Finally, my research supports the notion that pollution reduction has an equitable distribution of 

benefits, as low-income communities of color face disproportionate pollution burdens, higher rates of 

pollution-induced illness, and lagging academic outcomes. And since academic achievement is a strong 

predictor of economic resources (and vice versa), these benefits compound across generations. Thus, the 

academic effects of pollution exposure are an essential consideration for policymakers seeking to address 

these persistent societal disparities, whether through regulating pollution sources, prioritizing mitigation 

efforts, or allocating funds to reduce student exposure.   
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QUANTIFYING THE IMPACTS OF POLLUTION EXPOSURE  

ON ACADEMIC ACHIEVEMENT IN CALIFORNIA 

 

 

 

Abstract 

Children exposed to pollution may face chronic issues such as asthma or impaired brain 

development, or may experience acute impairment from elevated pollution levels at certain times of the 

year. These health impacts from pollution exposure may also hinder a child’s ability to succeed in the 

classroom, which has implications for educational attainment, lifetime earnings, and persistent disparities 

in educational and economic outcomes. In this paper, I use a fixed-effects panel regression analysis to 

compare nine years of test score data from California school districts with several pollution variables and 

quantify the long-term impacts of these pollutants on academic achievement. I find a statistically 

significant negative effect on either reading or math test scores from 1) levels of fine particulate matter in 

ambient air, 2) proximity to solid waste facilities, and 3) exposure to a group of pollution sources linked 

to poor drinking water quality. A one-standard-deviation increase in fine particulate matter decreases 

average reading scores by 2.75%. A one-standard-deviation increase in solid waste facilities and water 

quality threats decreases math scores by 1.75% and 0.96%, respectively.  These results are robust to 

different regression specifications. Interaction effects show that the incremental academic impact of these 

pollutants varies considerably depending on a district’s geographic and demographic characteristics.  
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1. Introduction  

Researchers have examined a broad range of factors that may influence student performance in 

the classroom. These factors range from direct elements of the classroom experience, such as class sizes 

and teacher experience levels (Cho et al., 2012; Leigh, 2010), to more indirect socioeconomic factors like 

race/ethnicity and parental income (Bali & Alvarez, 2003; White et al., 2016; Akee et al., 2010; Conwell, 

2021). Researchers have also determined that components of students’ living and learning environments, 

like nutrition (Taras, 2005), textbook quality (Van Den Ham & Heinze, 2018), and even tree cover on 

campus (Sivarajah et al., 2018) influence their educational outcomes. Understanding the effect of these 

various factors is critical, as students’ ability to succeed in school is a strong predictor of future earnings 

and economic mobility (Chetty et al., 2011; Aber et al., 2012). This paper, used to satisfy the culminating 

experience for my MPPA degree from CSU Sacramento, furthers the understanding of educational 

determinants by examining the extent to which district-wide exposure to environmental pollution 

influences average district-wide performance on standardized tests. In the remainder of this introduction, I 

offer a summary of the causal mechanisms connecting various types of pollution to academic 

achievement, explore the factors driving the observed correlation between pollution and other 

determinants, and provide an overview of this study’s methodological approach. 

Environmental pollution sources often originate from human activity and are highly localized. 

Exposure to environmental pollutants is known to have negative impacts on several markers of physical 

health and cognitive ability. For example, particulate matter, ozone, and nitrous oxides are the primary 

components of “smog” that has plagued urban areas and led to increased incidences of asthma, lung 

cancer, and heart disease (Manisalidis et al., 2020; Beeson et al., 1998; Nuvolone et al., 2018; Anenberg 

et al., 2018). Various estimates show that fine particulate matter (PM 2.5) alone contributes to thousands 

of premature deaths in California each year (Wang et al., 2019; Zhang et al., 2018; California Air 

Resources Board, n.d. -a). Emerging research also points to the harmful effects of air pollution on 

cognitive function, as studied in groups such as chess players (Künn et al., 2019), baseball umpires 

(Archsmith et al., 2018), stock traders (Meyer & Pagel, 2017), politicians (Heyes et al., 2019), and 



7 

 

general office workers (Allen et al., 2016). The effect of air pollution on academic performance in 

children may thus be multifaceted, as chronic exposure in daily life can harm development and cause 

attendance issues, while acute exposure at school may impair cognitive function on test day. Other 

pollutants also have known impacts on children’s health, development, and ability to learn. Examples 

include the well-studied effects of lead poisoning (Canfield et al., 2003; Eubig et al., 2010; Ha et al., 

2009; Surkan et al., 2007), pre-natal exposure to pollutants from EPA Superfund sites (Persico et al., 

2020; Baibergenova et al., 2003), and proximity to certain industrial facilities (Mohai et al., 2011; Pastor, 

Sadd, & Morello-Frosch, 2004; Choi et al., 2006). The long-term effects of growing up in a polluted 

environment, even when pollution concentrations are within legally established limits, appear to have 

lasting harms that warrant further study and may justify further policy intervention.  

Pollution data indicate vast differences in exposure across geographies, as the modern pollution 

burden falls disproportionately on low-income communities of color (California Environmental 

Protection Agency (CalEPA), 2021a). Researchers have traced these differences to historic (often 

discriminatory) practices in environmental and land use regulation (CalEPA, 2021b; Lane et al., 2022; 

Gonzalez et al., 2022), which are likely also reflected in modern depressed property values (Chay & 

Greenstone, 2005; Hanna, 2007). The “urban renewal” programs in the U.S. during the 1950s and 60s 

razed sections of black and brown neighborhoods to install interstate highways, and discriminatory 

housing policies such as redlining restricted these same affected people from moving to wealthier, less 

polluted neighborhoods (Karas, 2015; Houston et al., 2004; Lane et al., 2022). Additionally, decades of 

individual facility siting decisions disproportionately placed polluting industries in minority 

neighborhoods (Mohai et al., 2015; Pastor et al., 2001), and the resulting hedonic property devaluation in 

these areas may have further attracted low-income residents (Been, 1994). 

This analysis connects nine years of average test score data from California public school districts 

compiled by the Stanford Education Data Archive (SEDA; Reardon et al., 2021) with overlapping sets of 

pollution data compiled in CalEnviroScreen (CES), a tool developed by the California Office of 

Environmental Health Hazard Assessment (OEHHA, 2022) to identify “disadvantaged” communities for 
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targeted environmental remediation. Using this data in a simple bi-variate correlation shows that an 

increase in one form of localized pollution (PM 2.5) correlates negatively with English Language Arts 

(ELA) test scores. Simultaneously, PM 2.5 is positively correlated with school district percent non-White 

students, and district percent non-White is negatively correlated with ELA test scores (see Figures 1, 2, 

and 3). Thus, the observed relationship between pollution exposure and test scores may merely be 

reflecting the academic effects of highly-correlated demographic variables. However, the multivariate 

regression analysis that follows finds that, in California, the observed relationship between certain 

pollution variables and standardized test scores continues to hold true even after controlling for potential 

confounding factors.  

The remainder of this paper offers: 1) a brief literature review that explores causal mechanisms 

and lists prior studies on the relationship between pollution and test scores, 2) descriptive information on 

the datasets supporting my analysis, 3) the theoretical framework supporting my fixed effects panel 

regression model and several key methodological considerations, 4) the results of my analysis and the 

robustness of my findings, 5) a discussion of my results, including an analysis of effect sizes, comparison 

to prior studies, implications for policymakers, and the basis for future research, and 6) concluding 

remarks that highlight key findings and recommendations.  
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Figure 1: Simple Correlation between District PM 2.5 Concentration and Mean ELA Test Scores  

 

Figure 2: Simple Correlation between PM 2.5 Concentration and District Percent Non-White Students 
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Figure 3: Simple Correlation between District Percent Non-White Students and Mean ELA Test Scores 

 

 

2. Literature Review 

Physical and cognitive impairments from pollution exposure could potentially have profound 

effects on a child’s life, as academic success is a strong predictor of education attainment and future 

earnings (Chetty et al., 2011; Chamberlain, 2013). Both pollution exposure and education outcomes also 

vary strongly by race and income and likely exacerbate longstanding racial/ethnic and socioeconomic 

disparities. While standardized test scores are not a perfect reflection of a student’s abilities or future 

potential, they still serve as a reasonable proxy for academic success and economic outcomes even in 

early grade levels. This literature review offers further detail on the causal relationship between pollution 

and test scores as supported by relevant public health and economic literature, and then explores the 

findings and limitations of prior studies that specifically examine this relationship. I choose to sort these 

studies into two methodological approaches—regression studies and natural experiments. 
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Causal Mechanisms 

 The effect of pollution exposure on test scores theoretically occurs through multiple causal 

pathways. As detailed in Table A1, air pollutants such as PM 2.5 can cause chronic respiratory illness 

such as asthma that lead to fatigue and school absences and impair learning. Exposure to various pollution 

sources may also impair long-term brain development, and even short-term pollution exposure may cause 

cognitive impairment that affects classroom performance regardless of development or health status. This 

relationship is complex, and the methodology of studies which examine these interactions may only 

capture a subset of possible causal pathways. Quasi-experimental studies are more robust to omitted 

variable bias, but their short-term temporal limitations imply that their results only reflect the marginal 

impact of changes in pollution exposure over the time window in question (whether through cognitive 

impairment or exacerbated chronic illness). The impact of air pollution on test day (Amanzadeh et al., 

2019) or only in the time following decreased coal plant operation (Gilraine, 2022) is likely much weaker 

than the cumulative impact of exposure throughout a child’s development. Conversely, observational 

studies with multiple years of data and enough controls likely capture a more holistic picture of pollution 

impacts, but are less able to distinguish between short- and long-term effects.  

Regression Studies 

One subset of existing studies uses a single cross-section of observations and Ordinary-Least-

Squares (OLS) regression analysis to examine test scores across a combination of various pollutants, 

physical settings, and timeframes and attempts to isolate the effect of pollution by including an 

appropriate suite of control variables. Mohai et al. (2011) geographically overlaps Michigan public 

schools with the federal EPA’s Toxic Release Inventory for industrial facilities and finds that, after 

controlling for confounding variables like race and socioeconomic status, students at schools in the 

highest quintile of toxic pollution exposure have higher absence rates and are less likely to meet state 

testing standards than students at schools with average levels of toxic pollution exposure. Pastor, Sadd, & 

Morello-Frosch (2004) use a comparable methodology and find similar results for Los Angeles area 

schools within one mile of industrial facilities that release toxins tracked by the EPA’s 33/50 Program. 
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However, these studies both only include one year of data and do not control for school or school district 

fixed effects, rendering their results less robust against potential omitted variable bias. Ham et al. (2011) 

examines California public elementary schools by Census tract and finds statistically significant negative 

effects of ozone, fine particulate matter (PM 2.5), and coarse particulate matter (PM 10) for both math 

and ELA scores. This study estimates that reducing PM 10 exposure at low-SES schools to the levels 

faced by high-SES schools would close the proficiency gap in ELA by 0.34% and in math by 0.5%. Ham 

et al. (2011) includes multiple years of data and appropriately controls for school-level fixed effects. 

Other studies using this multivariate regression approach, with variation in the techniques used to control 

for confounding factors, include Stayhorn, J.C. & Strayhorn J.N. (2012) and Kim et al. (2009) which find 

ongoing detrimental impacts of elevated childhood blood levels of lead and manganese.  

Natural Experiments 

Another subset of existing studies attempts to isolate the effect of pollution on test scores by 

taking a quasi-experimental approach, where clear temporal variation in pollution exposure more directly 

demonstrates that subsequent changes in test scores are not merely reflecting confounding factors. 

Amanzadeh et al. (2019) analyze short-run temporal variation in PM 10 and find that a one standard 

deviation increase in PM 10 levels on test day at Iranian high schools lowers aggregate test scores by 

0.64%, while a one standard deviation increase in PM 2.5 lowers aggregate test scores by 0.20%. Austin, 

Heutel, & Kreisman (2019) examine a Georgia school district that retrofitted school buses to mitigate 

emissions from diesel combustion and find that students who rode the cleaner buses saw their ELA scores 

improve by 0.09 standard deviations, which approximately equates to the expected performance gains 

from an additional five years of teacher experience. Heissel, Persico, & Simon (2019) use wind patterns 

along a major highway in Florida to show that children transitioning from elementary/middle to 

middle/high school had lower test scores and more absences and behavioral incidents if they moved to a 

school that is downwind of major traffic pollution. Gilraine (2020) examines air filters installed in 18 

schools in response to the 2015 Aliso Canyon natural gas leak in Southern California and finds that the 

schools which received the filters saw math scores improve by 0.2 standard deviations over the following 
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four months. Gilraine (2022) subsequently uses nationwide coal power plant operation times as an 

exogenous instrumental variable to estimate that each microgram-per-cubic-meter reduction in ambient 

PM 2.5 concentration improves average test scores for math and ELA by 0.02 standard deviations.  

Remaining Questions 

As described above, existing studies generally find modest but statistically significant effects of 

various pollutants on standardized test scores. However, these effects are not necessarily linear and may 

vary across student groups and test types. Amanzadeh et al. (2019) finds that high levels of ambient 

PM2.5 and PM10 on test day affects male students more than female students, and math scores more than 

ELA scores. In contrast, Austin, Heutel, & Kreisman (2019) find a statistically significant effect of diesel 

exhaust only on ELA scores and not math scores. Ham et al. (2011) and Mohai et al. (2011) find 

statistically significant effects of air pollution on both ELA and math scores, but the per-unit effect of 

pollution may be non-linear and depend on the subject, pollutant concentration, and test score quantile. 

The theoretical reason for these differences is not clear nor explored in detail.  

Additionally, as described in Table A1, several other common environmental pollutants and 

pollution sources are associated with detrimental health impacts in children, but studies have not 

previously examined them for their short- or long-term effects on academic achievement. While the effect 

of any individual pollutant on academic achievement may be small, communities facing the largest 

aggregate pollution burdens may be seeing an underappreciated level of learning loss due to chronic 

cognitive and physical impairments. The research that follows examines a broader range of pollution 

variables than found in existing studies and applies a fixed-effects panel regression model to capture the 

holistic impacts of pollution exposure throughout a child’s life.  

3. Data 

I now turn to my own study and provide more information on the SEDA and CalEnviroScreen 

datasets used to establish my panel regression model, which I use to examine the relationship between test 

scores and pollution exposure in California. 



14 

 

SEDA 

As a measure of standardized test performance, I use 2009-2018 test score data from 6th graders 

at California public schools obtained from the Stanford Education Data Archive (SEDA) (Reardon et al., 

2021)1. SEDA includes test score data for 3rd through 8th graders, but I used 6th grade scores for my 

analysis since the dataset is missing California math scores for 7th and 8th graders for 2009-2014. 

Theoretically, the oldest possible students in the dataset would show the greatest amount of test score 

variation due to lifetime differences in pollution exposure, although acute cognitive impairment from 

short-run pollution exposure may not differ by age. SEDA uses standardized nationwide testing data from 

the National Assessment of Education Progress and tabulates scores for each school relative to a national 

reference cohort for each subject and grade (see technical documentation in Fahle et al., 2021). SEDA 

compiles this data with two different grading scales, denoted as the “cohort standardized” (CS) and 

“grade cohort standardized” (GCS) scales. The units for the CS scale are positive or negative standard 

deviations of difference relative to the national reference cohort, while the GCS scale indicates the grade 

level proficiency of the test results relative to the reference cohort (e.g., a score of 6 indicates the school 

or district is testing at a 6th grade level). The GCS scale also incorporates additional assumptions and thus 

is not a direct transform of the CS scale (Fahle et al., 2021). The GCS units are more readily interpretable 

for a broad audience and, since they are uniformly positive values, allow for taking the natural logarithm, 

which proved to be useful for my analysis. Hence, I use the GCS scale to present my primary findings in 

this paper. The SEDA dataset also includes estimates for several key school district qualities that I used as 

covariates in my model to control for potential confounding factors, such as race/ethnicity and 

socioeconomic status.  

 

 

 
1 SEDA includes data from 2009-2018, but is missing data from 2014. The omission of 2014 data from 

my model is a discrepancy worth noting but does not raise any immediate concerns for my findings. 
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CalEnviroScreen 

The environmental pollution data come from versions 2.0-4.0 of CalEnviroScreen (CES), a tool 

developed by the California Office of Environmental Health Hazard Assessment (OEHHA) that tabulates 

“scores” for each Census tract in California based on a variety of pollution, health, and demographic 

indicators (OEHHA, 2021)2. California lawmakers and regulators use CES data to inform mitigation 

efforts and prioritize investments of environmental program funds. CES Census tract pollution scores are 

transformations of raw data that include factors such as distance weighting meant to capture the true 

impact of a pollution variable on a Census tract. For CES indicators that measure a specific polluting 

compound, these transformations are straightforward with minimal methodological variation between 

CES versions. For a few select indicators that represent a collection of compounds or a pollution source 

rather than specific compounds, these transformations may be more subjective or may have had 

methodological adjustments that render them incomparable between CES versions. I examined the CES 

methodology for each pollution variable (as described in OEHHA, 2021) to assess whether they were 

sufficiently consistent across CES versions and whether the underlying data had enough variation to 

assemble a panel regression model across 2009-2018. I excluded six of the thirteen pollution variables 

from my analysis on these grounds (Table 1).  

The collection of CES scores occurred over slightly different timeframes, ranging from 2009-

2021 depending on the variable and the CES version. Each new release of CES uses more recent data, but 

the measurement timeframes do not perfectly match between variables given the different underlying 

datasets and methodologies. Additionally, the measurement of SEDA test score data occurred between 

2009-2018, which does not perfectly overlap with the CES measurement timeframes. To assemble the 

data panel for my regression model, I mapped each of the three iterations of CES data to approximately 

three corresponding SEDA data years, depending on the measurement timeframe of each pollution 

 
2 CES version 1.0 assigned scores to zip codes rather than census tracts, and thus is not directly 

comparable with subsequent versions for the purposes of my analysis. 
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variable. These slight temporal discrepancies are worth noting but likely do not introduce any meaningful 

bias as the intent of this research is to estimate the holistic impacts of pollution exposure in students’ 

living and learning environments rather than the precise impacts of pollution in a setting or time 

sequence. Studies that focus on specific settings, pollutants, and causal pathways necessitate more rigid 

assumptions and more precise time sequences than were available through SEDA and CES.  
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Table 1: Descriptive Statistics for All Variables  

Dependent Variable Units Mean Standard 

Deviation 

Minimum Maximum 

Average Grade Level Achievement for 6th 

Graders 

Natural log of district mean grade level scores, using the SEDA grade-

cohort-standardized (GCS) scale 

5.36 1.52 0.33 12.32 

Average Grade Level Achievement for 6th 

Graders (math scores only) 

Natural log of district mean grade level scores for math, using the 

SEDA grade-cohort-standardized (GCS) scale 

5.30 1.50 0.33 12.32 

Average Grade Level Achievement for 6th 

Graders (ELA scores only) 

Natural log of district mean grade level scores for ELA, using the 

SEDA grade-cohort-standardized (GCS) scale 

5.43 1.54 0.33 11.33 

Pollution Variables      

PM 2.5 Annual mean fine particulate matter (PM 2.5) concentration, 

micrograms per cubic meter (µg/m³) 

9.46 3.08 1.84 19.60 

Groundwater Threats Sum of weighted number of selected sites from GeoTracker and 

CIWQS databases 

27.83 40.09 0.00 673.75 

Solid Waste Facilities Sum of weighted number of solid waste sites and facilities 3.34 4.47 0.00 35.75 

Hazardous Waste Facilities Sum of weighted number of permitted hazardous waste generators, 

facilities, and chrome platers 

0.44 0.99 0.00 15.53 

Cleanup Sites Sum of weighted number sites from Envirostor database 8.10 11.81 0.00 158.7 

Traffic Traffic volumes (vehicle-km per hour) divided by total road length 

(km) within 150 meters of each Census tract 

791.0 625.1 18.85 4358.4 

Impaired Water Bodies Summed number of pollutants present in water bodies designated as 

impaired 

4.21 4.72 0.00 35.00 

Control Variables      

District Urban Status Continuous variable with values from 0-1 0.17 0.33 0.00 1.00 

District Town Status Continuous variable with values from 0-1 0.17 0.34 0.00 1.00 

District Rural Status Continuous variable with values from 0-1 0.31 0.41 0.00 1.00 

Percent Native American District percentage (0-1) 0.02 0.05 0.00 1.00 

Percent Asian District percentage (0-1) 0.08 0.12 0.00 0.78 

Percent Hispanic District percentage (0-1) 0.48 0.29 0.00 1.00 

Percent Black District percentage (0-1) 0.04 0.06 0.00 0.70 

Percent Free and Reduced Lunch District percentage (0-1) 0.55 0.26 0.00 1.00 

Percent English Language Learners District percentage (0-1) 0.19 0.17 0.00 0.96 

Percent Special Education District percentage (0-1) 0.10 0.04 0.00 0.98 

Total Enrollment District number of students 682.1 2024 1.00 52693 

Median Income District median income in inflation-adjusted US Dollars 63,572 25,598 22,201 219,043 

Percent of Adults with at Least a Bachelor’s 

Degree 

District percentage (0-1) 0.26 0.17 0.00 0.84 

Unemployment Rate District percentage (0-1) 0.09 0.03 0.00 0.23 

Proportion of Single Mother Households District percentage (0-1) 0.17 0.05 0.01 0.36 

Note: CES contains additional pollution variables that were not included in my regression model due to data limitations: Ozone, Diesel PM, Drinking Water Quality, Pesticides, 

Children’s Lead Risk from Housing, and Industrial Toxin Releases. The underlying data used to derive these variables in CES either had limited (or no) variation across panel 

years, or had major methodological or measurement changes that rendered them incomparable between CES versions. Each of these omitted variables has a theoretical connection 

to academic achievement and is worth exploring in future research. 
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4. Methodology and Empirical Framework 

 In this section, I offer the methodology behind my research and summarize the underlying 

theoretical relationship between standardized test performance as a dependent variable and a variety of 

determining factors, including pollution exposure.  

Methodological Overview 

I apply a fixed-effects panel regression model to estimate the effect of Census-tract CES pollution 

scores on SEDA standardized test scores in geographically overlapping school districts. To connect CES 

scores to school districts, I used GIS mapping to match every California public school in the SEDA 

dataset to the corresponding Census tract, and then took the simple average of pollution scores for each 

school in a district. This approach serves as an appropriate proxy for students’ holistic pollution exposure 

levels both at school and outside of it, since school districts cover a geographic area that encapsulates 

daily life for most students in the district. District averages reflect a less granular estimate of proximate 

pollution exposure at schools, but capture more of the cumulative effect of pollution exposure than 

targeted, quasi-experimental studies such as Amanzadeh et al. (2019), which only reflect the effect of 

short-run pollution exposure during the school day. Of course, a small percentage of students likely live 

or spend considerable time outside of the geographic area of their school district, but this effect is likely 

muted by the geographic enrollment restrictions of public-school districts and is not a likely source of 

omitted variable bias. 

SEDA contains a wealth of information for each school district to control for confounding factors 

in a regression analysis, but is missing a few potentially relevant variables related to academic 

administration such as school funding, student-teacher ratio, administrative structure and practices, and 

extracurricular offerings. These factors often correlate with socioeconomic status, which the model 

includes, but do not necessarily do so. The inclusion of school district and year fixed effects in my model 

controls for district-level idiosyncrasies and produces regression coefficients that are more robust to 

omitted variable bias. The tradeoff of this more robust approach is that some time-invariant CES pollution 

variables are necessarily excluded from the panel model, as listed in Table 1.  
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Theoretical Model 

The following equation represents a mathematical approximation of test score variance based on 

the data parameters included in my model:  

Mean district proficiency grade level for 6th grade ELA, math, and overall test scores = 

f(Environmental Pollution Effects, Demographic Effects, Socioeconomic Effects, Geographic Effects, 

Academic Effects, School District Fixed Effects, and Year Fixed Effects)  

Where:  

Environmental Pollution effects = f(school district prevalence of ambient fine particulate 

matter, vehicle traffic, toxic clean-up sites, impaired water bodies, groundwater threats, hazardous 

waste facilities, and solid waste facilities) 

Demographic effects = f(district percentage Black, district percentage Hispanic, district 

percentage Asian, and district percentage Native American) [white is the omitted reference 

category]  

Socioeconomic effects = f(median income, local unemployment, district free or reduced-price 

lunch percent, parents’ educational attainment, percent of single-mother families) 

Geographic effects = f(district characterization as urban, town, or rural) [suburb is the omitted 

reference category]  

Academic effects = f(district enrollment, percent special education students, percent English 

language learners)  

School District Fixed Effects = categorical control for California school districts such that 

idiosyncratic qualities of individual districts (such as administrative practices) do not bias other 

regression coefficients 
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Year Fixed Effects = categorical control for each year in the data panel such that idiosyncratic 

qualities of that year (such as macroeconomic conditions) do not bias other regression 

coefficients [2009 is the omitted reference year] 

The model presented above aims to capture a wide range of factors known or suspected to 

influence student performance on standardized tests, which allows for isolating and estimating the impact 

of individual pollution variables. Of course, no number of controls in an observational study can perfectly 

eliminate potential correlation between the explanatory variables and the remaining error term. However, 

this model maximizes the number of relevant control variables available in the data and incorporates 

school district and year fixed effects to minimize this remaining error3 and produce regression coefficients 

that are reasonably robust to potential omitted variable bias.  

Other Considerations 

Multicollinearity 

Correlation between explanatory variables can potentially obscure statistical significance, and 

including all CES variables simultaneously in a regression trial appears to induce multicollinearity with 

either other CES variables or the SEDA school district control variables (Table A6). Correlation amongst 

the control variables also likely impacted their p-values, but this result is not of concern since I include 

these variables only to capture a holistic picture of test score variance and control for confounding effects. 

Hence, I adjusted the regression model to reduce collinearity amongst CES variables by using the natural 

log of test scores on the GCS scale as the dependent variable and by conducting regression trials with 

CES pollution variables input one at a time. This approach is consistent with earlier studies such as Ham 

et al. (2011) which found high correlations between explanatory pollution variables.  

 

 
3 Specifically, my panel regression model with school district and year fixed effects and all pollution and 

control variables included explains about 90% of the overall variation in test score data.  



21 

 

Heteroskedasticity 

A fixed effects panel regression design is susceptible to a heteroskedastic distribution with 

residual errors intercorrelated across different clusters such as school districts, counties, or other 

geographic designations. Existing studies on the connection between pollution exposure and academic 

performance typically only consider one level of error clustering: for example, Ham et al. (2011) cluster 

standard errors only at the school level while Gilraine (2022) clusters at only the district level. Heissel, 

Persico, & Simon (2019) test different clustering specifications as a measure of robustness for their 

findings, and present regression results with a combination of error clustering by individual student, 

school, and zip code. The ideal level of error clustering is not clear and thus testing multiple regression 

specifications with different clustering levels is appropriate. As described in a methodological paper on 

error clustering by Cameron and Miller (2015), clustering at “higher” (i.e., less granular) levels typically 

offers less bias but more variability, which in turn leads to larger standard errors and less statistical 

significance. Thus, in the absence of a clear theoretical imperative to do otherwise, a conservative 

approach favors error clustering at higher levels. The SEDA data allows for error clustering by “commute 

zone,” which is decidedly less granular than school districts, zip codes, or counties (the dataset includes 

approximately 700 California school districts, 55 counties, and 16 commute zones). Thus, the favored 

regression results presented in the next section include error clustering by commute zone. However, as a 

measure of robustness, I also include results from lower clustering levels in Table A5.  

Interaction Effects 

This theoretical model describes the “main effects” of the explanatory pollution variables (i.e., the 

simple linear effect of these variables across the test score distribution, while controlling for confounding 

factors). However, I also examine “interaction effects” between certain pollution variables and selected 

covariates representing key geographic and demographic characteristics, which may provide additional 

insight into the mechanisms linking pollution exposure to academic achievement. Specifically, I examine 

how the effect of certain pollutants varies based on a district’s urban or rural status, the percent of 
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students in a district that are Black or Hispanic, and a district’s median income. These factors may 

influence the severity of incremental pollution impact because the particular chemical compounds 

associated with a given pollution variable are not homogenous (for example, fine particulate matter from 

a forest fire may contain different compounds than fine particulate matter from an industrial facility). 

Interaction effects with district urban or rural status may indicate whether particularly harmful pollution 

sources are located near population centers. Similarly, interaction effects with district percent Black or 

Hispanic may illustrate disparities in where these pollution sources were sited, or how pollution 

influences immigration patterns. Finally, interaction effects with income may show whether economic 

resources support personal pollution mitigation efforts, such as through household air or water filtration 

or proactive medical treatment for pollution-induced illness.  

5. Results 

 This section presents the results of my analysis, which includes my primary regression 

specification and explores the different effects found for math and ELA scores, multiple robustness 

checks, effect size calculations, and the findings of my interaction effect tests.  

Primary Specification 

Table 2 presents the results from the chosen specification of my fixed effects panel regression 

model. As described above, this regression specification includes the natural log of standardized test 

scores on the GCS scale as the dependent variable and inputs the pollution variables one at a time to limit 

multicollinearity, consistent with the methodological approach in prior studies. Since I used the natural 

log of test scores for all regression trials, I do not test non-linear functional forms for pollution variables. 

The chosen specification also clusters standard errors by commute zone to correct for heteroskedasticity, 

however I include results by different clustering levels as a robustness check in Table A5. As mentioned 

above, including all pollution variables included simultaneously (Table A6) appears to induce 

multicollinearity and obscure the effects of Groundwater Threats and Solid Waste Facilities, which are 

otherwise statistically significant when tested in isolation. Testing the pollution variables one at a time 
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largely does not raise concerns about potential confounding effects from other pollutants, since the effects 

of most of the other pollution variables are themselves not statistically significant (whether tested 

simultaneously or individually) and the correlations between any two individual pollutants are relatively 

small (<0.5).  

Math vs ELA Scores 

 The results of the chosen specification (Table 2) show that PM 2.5 has a statistically significant 

impact only on ELA scores and average scores, while Solid Waste Facilities has a statistically significant 

impact on only math scores and average scores. Groundwater Threats has a statistically significant 

impacts on math scores, ELA scores, and average scores. However, the results from the robustness tests 

(Tables A4 and A5) suggest that Groundwater Threats and Solid Waste facilities only have a statistically 

significant impact on math scores, and PM 2.5 only has a statistically significant impact on ELA scores. 
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Table 2: Regression Results from the Preferred Specificationa. From top to bottom, each cell includes 1) elasticity at the mean, 2) the regression coefficient, and 

3) the robust standard error. Results for the included control variables are found in Table A3. *** p<0.01, ** p<0.05, * p<0.1. 

Significant Pollution 

Variables 

Average 

Scores 

Math ELA Average 

Scores 

Math ELA Average 

Scores 

Math ELA 

PM 2.5 -0.043 -0.0024 -0.085       

 -0.00457** -0.000255 -0.00897***       

 (0.00213) (0.00426) (0.00247)       

Groundwater Threats    -0.0055 

-0.000197** 

-0.0067 

-0.000240** 

-0.0044 

-0.000157* 

   

    (8.12e-05) (0.000100) (8.12e-05)    

Solid Waste Facilities       -0.011 

-0.00338** 

(0.00146) 

-0.013 

-0.00392** 

(0.00164) 

-0.0095 

-0.00285 

(0.00204) 

Constant 1.681*** 1.581*** 1.783*** 1.637*** 1.575*** 1.703*** 1.641*** 1.579*** 1.706*** 

 (0.0640) (0.0859) (0.0635) (0.0634) (0.0775) (0.0642) (0.0631) (0.0776) (0.0641) 

Error Clustering Level Commute 

Zone 

Commute 

Zone 

Commute 

Zone 

Commute 

Zone 

Commute 

Zone 

Commute 

Zone 

Commute 

Zone 

Commute 

Zone 

Commute 

Zone 

Observations 10,964 5,486 5,478 11,554 5,782 5,772 11,554 5,782 5,772 

N districts 712 710 711 723 720 722 723 720 722 

R2 (within districts; 

between district; overall)b 

0.047; 0.490; 

0.495 

0.032; 0.536; 

0.553 

0.112; 0.299; 

0.289 

0.038; 0.511; 

0.482 

0.028; 0.569; 

0.537 

0.086; 0.301; 

0.264 

0.038; 0.497; 

0.474 

0.028; 0.552; 

0.526 

0.087; 0.301; 

0.266 
aFor the Preferred specification, the dependent variable is natural log of grade levels (the GCS scale) and I inputted each pollution variable one at a time (i.e., 

each regression coefficient represents a separate regression trial). I did include four other pollution variables in my model (Traffic, Cleanup Sites, Hazardous 

Waste Facilities, and Impaired Water Bodies) but found they were not significant for either test subject and thus omitted them from this table.  

bR2 for the fixed effects panel regression trials is reported as the percent of variation in test scores either within or between school districts accounted for by the 

model inputs, with the “overall” R2 calculated as the weighted average of the two. It does not represent the proportion of total test score variation across all 

observations accounted for by the suite of explanatory variables and fixed effects, which for all trials was approximately 0.9.  
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Robustness 

 I include two robustness checks to examine the consistency of my results under adjusted 

regression specifications. Table A4 uses standardized test scores with the natural log of the CS grade 

scale4 as the dependent variable and shows that the SEDA assumptions used to derive the GCS grading 

scale had essentially no impact on my results. Table A5 uses the preferred regression specification and 

tests if the results are consistent across error clustering levels. As mentioned above, both robustness tests 

suggest that Groundwater Threats and Solid Waste Facilities only have a statistically significant impact 

on math scores. Regardless, all three pollution variables show a statistically significant impact on test 

scores for all clustering levels on both grading scales, with one exception: Groundwater Threats is not 

significant with errors clustered at the district level. The pollution data in my model vary by school 

district, but error clustering does not necessarily occur at this level. The best practices for error clustering 

denoted in Cameron and Miller (2015) favor the conservative approach of clustering at more aggregated 

levels (with the highest aggregation level in my dataset being commute zones). Thus, the anomalous 

result is worth noting but does not immediately undermine confidence in the results for Groundwater 

Threats, which is still significant in all other robustness trials. Additionally, clustering at the district level 

reveals a statistically significant effect on math scores from the Hazardous Waste Facilities variable, but 

this finding is not robust to any other error clustering levels.   

Effect Size 

 Given that the CES pollution variables are each measured in different units and that the 

dependent variable in my preferred regression specification is the natural log of grade levels, I include the 

following calculations which allow for comparing the effects of pollution variables to each other and to 

similar results from prior studies. I find that a one standard deviation increase in a district’s ambient PM 

2.5 levels decreases ELA scores by 2.76%. I did not find a statistically significant effect of PM 2.5 on 

math scores. In contrast, I found a significant negative effect for Groundwater Threats on both math and 

 
4 Technically the CS grade scale with a constant added such that all values are positive, which preserves 

the distance between data points while allowing for taking the natural log. 
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ELA scores in the chosen specification, but per the robustness tests these variables may only have an 

impact on math scores. I find that a one standard deviation increase in a district’s CES scores for 

Groundwater Threats and Solid Waste Facilities decreases math scores by 0.96% and 1.75%, respectively.  

The elasticities of these effects (the percent change in average test scores per percent change in the 

pollution variable from mean levels) were -0.085, -0.0067, and -0.013, respectively, for PM 2.5 on ELA 

scores, Groundwater Threats on math scores, and Solid Waste facilities on math scores. 

Interaction Effects 

 Table 3a presents the results of regression trials that examine potential interactions between the 

three statistically significant pollution variables and selected covariates. I find that the effect of PM 2.5 on 

a district’s ELA scores varies by Rural Status, Percent Black, and Percent Hispanic, while the effect of 

Groundwater Threats varies by Median Income and Percent Hispanic, and the effect of Solid Waste 

Facilities varies by Urban Status. Some of these interactions show that the effect of a pollutant changes 

considerably at certain levels of the selected covariate (Table 3b). However, interpreting the interaction 

effects is somewhat ambiguous as the inclusion of the interaction terms in some cases affected the 

statistical significance of the individual variable regression coefficients5. Furthermore, the directionality 

of these interactions was mixed (i.e., the effect of variable A may increase or decrease as variable B 

increases) in a manner that does not necessarily align with expectations, and some interactions were only 

statistically significant for a limited subset of covariate values (Table 3b). These interactions warrant 

careful interpretation and point to the multiple causal pathways that are likely at play for each pollution 

variable, which I discuss in further detail below.  

 

 

 

 

 
5 To some extent, these findings may be influenced by multicollinearity between the interaction term and 

the individual explanatory variables, as evident in high variance inflation factor (VIF) scores.  



27 

 

Table 3a: Interaction Effects. Linear regression coefficients that describe how the effect of pollution variables depends on the value of other explanatory 

variables. Cells with two values include coefficients for the pollutant and the selected covariate, respectively. *** p<0.01, ** p<0.05, * p<0.1. 

Original Coefficients from Primary Regression 

Specification  

Urban Status Rural Status Percent Black Percent Hispanic Median Income 

PM 2.5 (ELA scores)a -0.00897*** 

-0.0392 

-0.00897*** 

-0.000487 

-0.00897*** 

-0.418** 

-0.00897*** 

-0.0837 

-0.00897*** 

-1.33e-07 

Groundwater Threats (math scores) -0.000240** 

-0.0184 

-0.000240** 

-0.0112 

-0.000240** 

-0.353* 

-0.000240** 

-0.0245 

-0.000240** 

5.28e-07 

Solid Waste Facilities (math scores) -0.00392** 

-0.0194 

-0.00392** 

-0.0112 

-0.00392** 

-0.362* 

-0.00392** 

-0.0263 

-0.00392** 

4.70e-07 

Updated Coefficients with Interaction Term 

Included 

     

PM 2.5 (ELA scores) -0.00894*** 

-0.0372 

-0.00484* 

0.0862* 

-0.00582b 

0.474 

-0.0181*** 

-0.237*** 

-0.00161 

1.03e-06 

Groundwater Threats (math scores) -0.000256** 

-0.0238 

-0.000196 

-0.000761 

-0.000286*** 

-0.477** 

-0.000695*** 

-0.0508 

0.000289 

8.17e-07 

Solid Waste Facilities (math scores) -0.00457** 

-0.0335 

-0.00250 

0.000280 

-0.00320 

-0.249 

-0.00110 

-0.00477 

-0.00703 

2.91e-07 

Interaction Coefficientsc      

PM 2.5 (ELA scores) -0.000193 -0.0101022* -0.100515** 0.0186714*** -1.31e-07 

Groundwater Threats (math scores) 0.0002013 -0.0001327 0.0025524 0.000758*** -9.16e-09* 

Solid Waste Facilities (math scores) 0.0097336* -0.0032229 -0.0487573 -0.0046686 6.13e-08 

aTest types selected for each pollution variable reflect the most robust linear effects found across error clustering levels per Table A5. 
bp=0.102 
cNote that some of the trials that produced statistically significant interaction effects did not simultaneously produce statistically significant effects 

for the individual interaction terms. Especially in cases where the terms themselves were significant prior to incorporating the interaction variable 

(for example, PM 2.5 and Percent Black), the change in standard errors for these terms may be due to collinearity with the interaction variable. 

Collinearity does not necessarily negate the observed interaction effect, but it is a caveat for assessing the validity of the result.  
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Table 3b: Marginal interactions. Linear regression coefficients that estimate the effect of pollution variables at a given level of other explanatory 

variables. *** p<0.01, ** p<0.05, * p<0.1. 

 

Respective Interaction 

Variable Level 

(Varies Between 0 to 

1) 

PM 2.5 and 

Rural Status 

PM 2.5 and 

Percent Black 

PM 2.5 and 

Percent 

Hispanic 

Solid Waste 

Facilities and 

Urban Status 

Groundwater 

Threats and Percent 

Hispanic 

Groundwater Threats 

and Median Income 

by Decile 

0 -.0048354* -.0058198* -.0181347*** -0.00457** -0.00069*** 0.000289 

0.1 -.0058456** -.0158719*** -.0162675*** -0.0036** -0.00062*** -0.0000579 

0.2 -.0068559*** -.0259228*** -.0144004*** -0.00263* -0.00054*** -0.000105 

0.3 -.0078661*** -.0359743*** -.0125332*** -0.00165 -0.00047*** -0.000153 

0.4 -.0088763*** -.0460258*** -.0106661*** -0.00068 -0.00039*** -0.000197 

0.5 -.0098865*** -.0560773*** -.0088799*** 0.000293 -0.00032** -0.000242* 

0.6 -.0108968*** -.0661288*** -.0069318*** 0.001266 -0.00024* -0.000291** 

0.7 -.011907*** -.0761804*** -.0050647** 0.00224 -0.00016 -0.000356*** 

0.8 -.0129172*** -.0862319*** -.0031975 0.003213 -8.9E-05 -0.000450*** 

0.9 -.0139274*** -.0962834*** -.0013304 0.004186 -1.3E-05 -0.000590*** 

1.0 -.0149376*** -.1063349*** .0005368 0.00516 6.31E-05 -0.00172** 
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6. Discussion 

Next, I interpret the regression results in comparison to prior studies, posit the theoretical basis 

for certain novel findings, use effect size calculations to assess possible policy responses, and lay the 

groundwork for future research needed to further understand the connection between pollution exposure 

and academic achievement.  

Math vs ELA Scores 

Multiple prior studies similarly find a statistically significant impact of PM 2.5 on test scores in 

different contexts and with different methodologies (see Table A2). However, there are only limited 

studies examining the difference of the effect between math and ELA scores. Ham et al. (2011) use 

multiple measures for math and ELA scores—both raw scores and percent of students at least 

proficient—and show that PM 2.5 is statistically significant for both subjects, although the results are 

more robust for ELA scores (I only found the effect of PM 2.5 to be significant for ELA scores). Ham et 

al. (2011) also apply a quantile regression design and find that the marginal impact of PM 2.5 increases at 

higher math score levels. Conversely, Austin, Heutel, & Kreisman (2019) find that particulate matter 

emissions from diesel school buses only have a statistically significant impact on ELA scores, although 

particulate matter from diesel may contain different constituent compounds and particle sizes than general 

ambient PM 2.5.  

I did not identify any other studies that differentiate air pollution impacts between math and ELA 

scores, and none of these studies offer a theoretical explanation as to why the effect would be different on 

different subjects (or why the effect would be non-linear in some cases). The causal relationship between 

pollution exposure and test scores is complex and occurs through multiple channels, and thus it is possible 

that the effects on ELA and math occur through different mechanisms. For example, perhaps impacts on 

ELA scores are mediated more by health issues that cause school absences, while math impacts occur 

more through acute cognitive impairment. Some studies have shown that math scores in general may be 

more sensitive to changes in exogenous factors (Trejo et al., 2021), but further research is needed to 

examine the different causal mechanisms by which pollution exposure affects math versus ELA scores.  
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Error Clustering 

Existing studies do not appear to sufficiently engage with the potential effect of error clustering 

on pollution impacts. The only study identified that tested error clustering at different levels was Heissel, 

Persico, & Simon (2019), which determined that their results were robust at different clustering levels but 

did not test any “higher” level than zip code. Most other studies do not examine the issue at all and simply 

cluster errors by the frame of reference in question (typically the school or district level). Though largely 

consistent across trials, my regression results did vary somewhat between error cluster levels, with 

notable discrepancies for Groundwater Threats and Hazardous Waste Facilities when clustered at the 

district level (Table A5). Limiting error clustering to one level (without a clear empirical imperative to do 

so) may produce misleading results and future studies should engage with this issue more thoroughly.  

Groundwater Threats and Solid Waste Facilities 

Unlike my results for PM 2.5, which are supported by a number of previous studies, the 

statistically significant effect on test scores I find for the CES variables denoted as Groundwater Threats 

and Solid Waste Facilities appear to be largely novel findings. Since both of these variables represent 

pollution sources rather than direct pollutant measurements, the mechanisms through which they affect 

test scores are less immediately discernible. However, the significance and robustness of my findings 

warrant further exploration into the possible connections between the components of these variables and 

student performance on standardized tests.  

To many, Solid Waste Facilities (mostly landfills, but also composting facilities, waste tire 

facilities, and scrap metal recyclers) are a public nuisance, with disruptive odors, air pollution from 

facility fires and landfill gas leaks/flares6, soil and groundwater pollution from landfill leachate, frequent 

heavy truck traffic, and loud industrial machinery. A limited number of studies have found 

epidemiological impacts from landfills (Palmer et al., 2005; Vassiliadou et al., 2009; Mataloni et al., 

 
6 EPA (2021) describes the public health and safety problems of solid waste facility fires from improperly 

disposed lithium-ion batteries (an increasingly common element in the waste stream). 
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2016) and a connection to academic achievement is certainly plausible. Future studies could take a more 

granular approach and use the distance between specific schools and these facilities as an explanatory 

variable or introduce a time component to see if students perform worse on days with facility fires or high 

odor levels.  

The Groundwater Threats variable draws from two state databases7 and consists of a variety of 

pollution sources deemed a threat to groundwater, such as leaking fuel storage tanks, oil and gas drilling 

ponds, dairy feedlots, sewage plants, and certain toxic cleanup sites not covered by the separate “Cleanup 

Sites” variable. CES highlights how various toxic compounds from these pollution sources, such as 

benzene, toluene, chlorinated solvents, lead, chromium, and arsenic can permeate groundwater and come 

into human contact through drinking water systems8. However, some of these volatile compounds could 

also reach people through evaporation or contact with contaminated soil or surfaces. While I was unable 

to incorporate the CES variable “Drinking Water Quality” into my model due to insufficient variation 

across panel years, a future study that incorporates direct drinking water quality data would be useful to 

help distinguish these causal paths.  

Negative Results 

I found a few negative (i.e., non-statistically significant) results for certain pollutants that warrant 

comparison to existing studies. Heissel, Persico, & Simon (2019) find a statistically significant impact of 

pollution from vehicle traffic on test scores. I find no such effect, whether by including traffic alongside 

PM 2.5 so that the variables do not confound each other (Table A6) or by testing traffic in isolation (Table 

2). However, Heissel, Persico, & Simon (2019) find that the effects of traffic pollution are mediated by 

wind patterns, such that students that attend school downwind of major vehicle traffic show worse test 

 
7 GeoTracker and the California Integrated Water Quality System, both overseen by the California State 

Water Resources Control Board. Note that these pollution sources are common and not necessarily 

concentrated in urban or rural areas (OEHHA, 2021; Beckley et al., 2022). 
8 Nearly a million Californians currently have drinking water systems deemed unfit for human 

consumption, whether from dilapidated municipal infrastructure or contaminated wells (California State 

Auditor, 2022). 
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scores, higher absences, and more behavioral problems. My data maps high traffic levels only to 

geographically proximate school districts, and thus a negative finding for the traffic variable does not 

contradict the notion that wind patterns determine which schools bear the impact of traffic pollution. In 

contrast, my PM 2.5 variable reflects actual concentration measurements and thus its impact does not 

depend on wind patterns.  

Separately, the mostly negative results for Cleanup Sites and Hazardous Waste Facilities are 

notable because these variables have some parallels in prior research. Rau, Urzua, and Reyes (2015) find 

a negative impact of toxic waste sites in Chile on the test scores and future earnings of students that attend 

the surrounding schools, and they estimate that each kilometer of distance from these sites improves math 

scores by 0.09 standard deviations. Other studies establish a connection between EPA Superfund sites (a 

primary component of the CES Cleanup Sites variable) and infant abnormalities, childhood lead 

exposure, and childhood cognitive and behavioral issues (Persico, Figlio, and Roth, 2020; Currie, 

Greenstone, and Moretti, 2011; Klemick, Mason, and Sullivan, 2020). These outcomes would 

theoretically have a negative impact on academic achievement, but I find no such effect. However, 

without access to actual pollution concentrations it is difficult to make a direct comparison. Perhaps in 

California these sites simply do not produce enough environmental pollution to have a detectable impact 

on local children, and studies in other locations would show otherwise.  

The final pollution variable I examined—impaired water bodies—had the most tenuous 

theoretical support and likewise did not show a statistically significant effect on test scores. This negative 

finding suggests that pollution exposure from recreation in lakes and rivers or consuming wild-caught fish 

(which may contain high levels of mercury or other heavy metals) did not have a detectable negative 

impact on academic achievement in California from 2009-2018.  

Effect Size Analysis  

Table A2 summarizes the effect size for PM 2.5 found in prior studies in order to contextualize 

my results. Prior studies establish a largely consistent framework for the effect of PM 2.5 on test scores 

over time: PM 2.5 levels on test day alone only produce 0.2-0.5x the effect of PM 2.5 levels throughout 
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the school year, and air pollution mitigation largely reverses the effect. My analysis, which aimed to 

estimate the aggregate impact of pollution exposure throughout a student’s life rather than over a limited 

timeframe9, produced an effect size of approximately the same magnitude as studies that examine the 

effect of PM 2.5 on average test scores throughout the school year, which largely corroborates this 

existing understanding. Hence, the health and cognitive impacts of PM 2.5 appear largely 

contemporaneous rather than rooted in irreparable developmental harms, which is an encouraging finding 

for the potential benefits of policy intervention. Separately, the effect sizes I find for Groundwater Threats 

and Solid Waste Facilities are somewhat smaller than PM 2.5 but still non-trivial and worth further 

investigation, especially as the actual impact of poor drinking water quality may prove to be much greater 

than the indirect proxy offered by the collection of pollution sources denoted as Groundwater Threats.  

Interaction Effects 

The interaction effects I find in Table 3 provide additional context for the causal mechanisms 

supporting the impact of PM 2.5, Groundwater Threats, and Solid Waste Facilities on math or ELA test 

scores, although these interactions are complex and, in some cases, have ambiguous statistical validity (as 

noted in Table 3a). As a whole, my interaction tests support the notion that the constituent compounds of 

pollutants such as PM 2.5 are not homogenous, and that the incremental cognitive, physical, and 

academic effects of elevated pollution exposure may vary dramatically based on geography and 

demographics. For example, the magnitude of the interaction I found between PM 2.5 and Percent Black 

is particularly striking: for California school districts that are 70% Black (the highest value in my dataset), 

the effect of PM 2.5 on ELA scores is approximately 13-times the effect in districts that are 0% Black, 

and 8-time the average effect found across all districts (Table 3b). Similarly, Kodros et al. (2022) find that 

PM 2.5 in highly segregated U.S. counties contains 3-12 times the level of toxic heavy metals than PM in 

well-integrated counties, which may explain why the same concentration of PM 2.5 exposure appears to 

 
9 One prior study—Ham et al. (2011)—takes a similarly holistic approach, but is not directly comparable 

since their measure for PM 2.5 is percent of days above the regulatory standard, which does not 

necessarily approximate actual PM 2.5 concentrations experienced throughout the year. 
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be more harmful in majority Black districts than majority White ones. Interestingly, I find an opposite 

(although less dramatic) effect for the interaction between PM 2.5 and Percent Hispanic: the effect of PM 

2.5 on ELA scores is 3.6-times lower in districts that are 70% Hispanic versus districts that are 0% 

Hispanic, and 1.8x lower than the average effect found across all districts10. In California, the different 

effects of PM 2.5 in Black versus Hispanic districts may reflect historical patterns of land use and 

migration—perhaps discriminatory land use practices disproportionately sited the particularly harmful 

sources of PM 2.5 in Black neighborhoods, while, ceteris paribus, Latin American immigrants that 

arrived in California in more recent decades self-sorted away from these existing harms.   

I also found evidence that the effect of the pollution variables depends somewhat on geography 

and income. The per-unit effect of PM 2.5 in fully rural districts is 1.7-times the effect of PM 2.5 in 

average districts, which, like with majority Black districts, suggests that heavily rural districts are exposed 

to more harmful particulate compounds. Likewise, the positive interaction between Solid Waste Facilities 

and urban status would suggest that perhaps the more toxic waste facilities are located away from major 

population centers, but this finding is likely irrelevant since the interaction was only significant for low 

values of urban status (Table 3b). Finally, I find that the effect of Groundwater Threats is more harmful as 

income increases above median levels. While I did not find a significant interaction between PM 2.5 and 

income, Mullen et al. (2020) found that the incremental effect of PM 2.5 was significantly more harmful 

in high-income schools, and the authors suggest that perhaps these schools are more sensitive to the 

effects of air pollution because they are less burdened by other socioeconomic disparities. Perhaps a 

similar mechanism supports the interaction I observed between Groundwater Threats and income, but 

further investigation is needed to corroborate and explain this finding. No other identified studies on the 

connection between pollution exposure and test scores examined these interactions, which should be 

given greater attention in future research.  

 
10 Note that these interactions of PM 2.5 and Percent Black or Percent Hispanic also include the same 

suite of control variables as all other regression trials (i.e., the effect of PM 2.5 varies by race/ethnicity 

regardless of income and geography) 
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Policy Implications 

At least for PM 2.5, existing research suggests that the harms from continued exposure are mostly 

reversible, and that straightforward interventions may produce cost-effective academic benefits. Consider 

the finding in Gilraine (2020) that air purifiers installed in classrooms subsequently improved average 

student test scores by 0.2 standard deviations. While this result may appear to be somewhat higher than in 

similar studies (Table A2), it is not necessarily unreasonable given that indoor air quality may be worse 

than outdoor air quality (Chen & Zhao, 2011), and that commercially available air purifiers remove 

around 50-90+% of indoor particulates, though estimates vary (Gilraine, 2020; Maestas et al., 2019). This 

reduction in indoor PM 2.5 approximates a one-to-two-standard-deviation difference from the mean, and 

a potentially even greater reduction relative to (generally lower) ambient outdoor PM 2.5 levels. I found 

that a one standard deviation increase in district ambient PM 2.5 decreases ELA test scores by 0.12 

standard deviations and average test scores by 0.066 standard deviations (since the effect of PM 2.5 on 

math scores appears to be minimal). Hypothetically, if 90% of ambient PM 2.5 in a mean district is 

eliminated (an unrealistic outcome for even the most aggressive regulatory standards), then that district 

would see a 0.12 standard deviation improvement in average test scores and a 0.21 standard deviation 

improvement in ELA scores. Thus, the finding from Gilraine (2020) is perhaps slightly high but appears 

reasonable. Hence, my results support the finding in Gilraine (2020) that air pollution mitigation has 

immediate benefits for academic achievement and that classroom air purifiers are a potentially cost-effect 

education intervention11. My findings also show that the per-unit impact of PM 2.5 in California is 

particularly severe in Black districts, and thus any policy mechanisms or funding to support indoor air 

filtration may produce outsize (and equitable) benefits by prioritizing these communities.  

Separately, the policy implications of my results for Groundwater Threats and Solid Waste 

Facilities are less certain until further research is done to delineate the underlying causal mechanisms 

 
11This finding is also supported by Stafford (2015), which found that school retrofits to improve 

ventilation increased test scores by 0.07-0.11 standard deviations, and that this educational benefit is more 

cost-effective than other common interventions such as class-size reductions.  
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(such as the extent to which these pollution sources are contaminating drinking water systems). Water 

quality and waste management systems are both thoroughly regulated in California, and the potential 

impacts of these variables on academic achievement warrant consideration in the cost-benefit analyses 

that support these regulations and associated mitigation efforts.  

Remaining Questions and Future Research 

My findings corroborate and support a growing body of research pointing to significant negative 

impacts of PM 2.5 exposure on academic achievement, and present novel findings of a similar negative 

impact from a group of pollution sources denoted as Groundwater Threats and Solid Waste Facilities. For 

these latter two variables, I suggest additional research to replicate my findings and deduce the underlying 

causal mechanisms and mediating factors.  

For PM 2.5, I also suggest additional research to understand the mechanisms and subcomponents 

of this variable that are driving the effect. “Particulate matter” is a catch-all term for several forms of 

small particles that accumulate in ambient air and can cause health problems through inhalation, where 

finer particles can penetrate further into the lungs12 (Hassan et al., 2017). However, the constituents of 

particulate matter can vary based on the source and location. As described above, more toxic forms of PM 

2.5 (such as heavy metal particulates from certain industrial sources) may be particularly concentrated 

and have disproportionate effects in Black communities. PM is also not entirely anthropogenic, as it also 

includes particles from wildfire smoke, pollen, sea spray, and other particulates arising from natural 

processes (Marcotte, 2017; Hassan et al., 2017). Coarse PM (PM 10) and PM from diesel exhaust are also 

known to have different constituents and effects than general PM 2.5 and are tracked separately in air 

toxics inventories (California Air Resources Board, n.d. -b). Thus, studies that estimate the impact of 

individual components of air pollution may also be picking up impacts from other highly correlated 

components. Fortunately, the collinearity of air pollution variables means that regulatory standards for 

pollution sources (such as vehicle exhaust) often affect multiple air pollutants simultaneously and 

 
12 PM 2.5 refers to particles of less than 2.5 microns in diameter, while PM 10 refers to particles of less 

than 10 microns in diameter (inclusive of PM 2.5). 
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differentiation is not necessary. However, the different components and particle sizes that comprise air 

pollution may still lead to different health (and educational) outcomes and warrant further study. 

Finally, I recommend future research to examine the educational impact from other CES pollution 

variables that I was unable to incorporate into my panel regression model, such as pesticides, drinking 

water quality, industrial toxin releases, and lead exposure. Mohai et al. (2011) and Persico and Venator 

(2018) find a negative impact from industrial toxins on the test scores at surrounding schools, although 

Mohai et al. (2011) did not include controls for year, school, or district fixed effects. Many studies have 

examined the effect of lead poisoning on children’s cognitive function and test performance (such as 

Trejo et al. (2021) which examined the Flint, Michigan lead crisis), but understanding the impact of 

sources of lead is difficult because many sources exist in the built environment and blood samples cannot 

differentiate them. CES 4.0 added a variable described as “children’s lead risk from housing” that 

attempts to estimate lead exposure from lead-based paint typically found in older housing stock, while the 

CES variables for PM 2.5, drinking water quality, industrial toxin releases, and hazardous cleanup sites 

capture other sources of lead exposure. I was unable to incorporate three of these five CES variables in 

my data panel (Table 1), but a subsequent study focused on lead poisoning could gather enough panel 

data from relevant public datasets to differentiate the educational impacts of lead exposure from these 

various sources.  

7. Conclusion 

 I find that California public school students have seen a small, but meaningful loss in 

standardized test score performance from exposure to certain forms of environmental pollution in their 

districts, including fine particulate matter in ambient air, landfills and other waste facilities, and water 

quality threats posed by a class of common contamination sources in the built environment. The effect 

sizes I find for each of these three pollution variables are substantial enough for policy consideration, 

especially as some paths to pollution mitigation (such as installing air filters in classrooms) may produce 

test score gains that are more cost-effective than other commonly prescribed educational interventions. 

Since pollution exposure often varies strongly by race, income, and geography, even untargeted 
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mitigation has an equitable distribution of benefits. However, I also find that air pollution is particularly 

harmful in majority Black school districts and in heavily rural districts, and thus classroom air quality 

improvements would disproportionately benefit these communities.  

Finally, I argue that all studies examining the connection between pollution and academic 

achievement (including my own) underestimate the true aggregate effect by not accounting for the 

endogenous effect of pollution on other determinants of educational outcomes, namely family income and 

socioeconomic status. Existing research clearly indicates that pollution exposure harms cognition and test 

performance, which in turn lowers expected lifetime incomes. Parents who themselves have experienced 

economic harm from undue pollution burdens are less enabled to foster academic success in their 

children. Thus, pollution mitigation provides both an immediate, direct benefit for current students and 

provides an indirect benefit for students in subsequent generations. And as such a profound correlation 

exists between race, income, pollution burden, public health, and academic achievement, these benefits 

would accrue disproportionately in disadvantaged communities and would work toward closing 

inequitable gaps in public health and educational outcomes.  
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Appendix 

Table A1: Sample of Relevant Literature Illustrating the Potential Effects of Pollution Exposure on Human Health and Cognition 

Variable Study Findings and Methodology 

Particulate Matter 

(effect on health) 

Beeson et al., 1998 Elevated ambient PM 10 levels are associated with increased incidents of lung cancer in California; cohort study of California 

adults 

Anenberg et al., 2018 5-10 million global emergency room visits for asthma in 2015 were attributable to PM 2.5 emissions, 73% of which were from 

anthropogenic sources; log-lin regression using epidemiological health impact functions 

Wang et al., 2019 Mortality from long-term PM 2.5 exposure in California was between 12,700-26,700 in 2012, of which 53% is attributable to in-

state anthropogenic emissions; PM 2.5 atmospheric modelling with concentration response functions 

Particulate Matter 

(effect on cognition) 

Künn et al., 2019 Chess players made more errors with elevated indoor PM 2.5 levels, exacerbated by time limitations; Fixed effects linear regression 

Archsmith et al., 2018 Baseball umpires made more incorrect calls with elevated ambient PM 2.5 levels; Fixed effects linear regression 

Meyer & Pagel, 2017 Stock traders were less productive at work on days with elevated ambient PM 2.5 levels; Fixed effects linear regression 

Heyes et al., 2019 Canadian politicians made less complex speeches on days with elevated ambient PM 2.5 levels, and this effect was non-linear; 

Fixed effects kernel-weighted regression with text analysis 

Toxic Cleanup Sites Baibergenova et al., 2003 New York zip codes with PCB-contaminated cleanup sites have increased rates of low birth weights; logistic regression 

Klemick et al., 2020 EPA Superfund site mitigation decreased pediatric blood lead levels within 2km by 13-26%; quasi-experimental difference-in-

difference fixed effects regression 

Persico et al., 2020 Florida children born near EPA Superfund sites have more cognitive and behavioral problems and lower test scores than siblings 

born after remediation; quasi-experimental fixed effects regression with instrumental variable controls 

Hazardous Waste 

Facilities 

Kouznetsova et al., 2007 New York zip codes with certain hazardous waste facilities have elevated diabetes hospitalizations; negative binomial regression 

Sergeev and Carpenter, 

2005 

New York zip codes with certain hazardous waste facilities have elevated coronary heart disease hospitalizations; negative binomial 

regression 

Pellerin and Booker, 2000 Hazardous waste facilities frequently handle compounds such as hexavalent chromium known to cause respiratory illness and 

cancer; literature review 

Solid Waste 

Facilities 

Palmer et al., 2005 Welsh communities near new or recently expanded landfills saw an increased rate of birth defects; quasi-experimental logistic 

regression 

Mataloni et al., 2016 Italian communities exposed to high levels of hydrogen sulfide from landfill gas saw an increase in respiratory illness and lung 

cancer; cohort study 

Vassiliadou et al., 2009 Elevated toxic dioxin levels found in food in Greek community near a landfill fire; laboratory testing 

Pesticides Winchester et al., 2016 California counties with elevated pesticide use have higher preterm births and lower birth weights; logistic regression 

Gunier et al., 2017 Children in an agricultural area of California with high prenatal exposure to five groups of pesticides scored lower on IQ tests and 

other measures of cognitive function; linear regression 

Rauh et al., 2012 Children with high chlorpyrifos exposure show increased brain abnormalities; cohort study with MRI examination 

Raanan et al., 2015 Children with high early-life exposure to a group of pesticides saw elevated respiratory illness; cohort study 

Soil and Water 

Contaminants 

Fram and Belitz, 2011 Groundwater systems in drier areas of California have elevated levels of perchlorate; logistic regression 

Steinmaus et al., 2010 Elevated perchlorate in California water systems is associated with disrupted endocrine function; logistic regression 

Ayotte et al., 2016 Areas in the California Central Valley have elevated risk of exposure to potentially toxic levels of arsenic and nitrates; logistic 

regression and boosted regression trees 

Shilling et al., 2010 Subsistence fishing in California delta communities likely results in mercury consumption above EPA advisory limits; food 

frequency survey given to shore anglers 
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Table A2: Effect Size Comparison for Studies that Examine the Impact of PM 2.5 Exposure on Test Scores  

Study Methods Timeframe of 

Analysis 

Findings Effect Size Notes and Comparison 

Marcotte 

(2017) 

Fixed effects panel OLS 

regression 

Test day Doubling PM 2.5 Air Quality Index 

scores on test day decreases ELA scores 

by 2% 

This effect size is likely less than half the magnitude of the effect I 

find for aggregate PM 2.5 exposure on ELA scores alone 

 

Heissel, 

Persico, & 

Simon 

(2019) 

Quasi-experimental 

difference-in-difference 

regression 

Test day and 

full academic 

year 

Attending school downwind of a major 

highway lowers average test scores by 

0.04 standard deviations 

The effect of PM 2.5 throughout the school year is 2-4x greater 

than the effect on test day alone 

The actual difference in PM 2.5 exposure concentrations between 

downwind and upwind schools is unknown, and thus comparison to 

other studies uncertain 

Amanzadeh 

et al. (2019) 

Quasi-experimental 

regression with visibility as 

an instrumental variable for 

air pollution exposure 

Test day One standard deviation increase in PM 

2.5 on test day is associated with 0.029 

of a standard deviation decrease in test 

scores 

This estimate is consistent with the estimate in other studies that 

test-day exposure produces around 0.2-0.5x the effect of exposure 

throughout the year  

Ham et al. 

(2011) 

Fixed effects panel OLS 

regression 

Observational, 

not time-

dependent 

One standard deviation increase in days 

of PM 2.5 above regulatory standard 

decreases reading scores by 0.006 

standard deviations 

This measure for PM 2.5 (percent of days above the regulatory 

standard) does not necessarily approximate actual PM 2.5 

concentrations experienced throughout the year, and thus 

comparison to other studies is uncertain 

Gilraine 

(2020) 

Spatial discontinuity 

regression 

4 months Air purifiers installed in classrooms for 

approximately 4 months subsequently 

improved average student test scores by 

0.2 standard deviations 

Air filtration likely decreased indoor PM levels by 50-90%, 

although actual pre- and post-treatment concentrations are unknown 

and thus comparison to other studies is uncertain 

Gilraine 

(2022) 

Quasi-experimental 

regression model with coal 

power plant operation as an 

instrumental variable for air 

pollution exposure 

Academic year One µg/m³ increase in ambient PM 2.5 

decreases subsequent average test 

scores by 0.02 standard deviations 

The effect of PM 2.5 throughout the school year is 2-5x greater 

than the effect on test day alone 

By multiplying this per-unit effect by the standard deviation for 

ambient PM 2.5 in CES (3.08 µg/m³), this estimate is 

approximately equal to the effect I find for aggregate PM 2.5 

exposure 

Stafford 

(2015) 

Quasi-experimental 

regression 

One to two 

years after 

retrofits 

School retrofits to improve ventilation 

increased average test scores by 0.07-

0.11 standard deviations 

The actual difference in PM 2.5 exposure concentrations between 

schools that did and did not receive ventilation retrofits is unknown, 

and thus comparison to other studies is infeasible 

Lavy et al. 

(2014) 

Fixed effects panel OLS 

regression 

Test day One standard deviation increase in PM 

2.5 decreases scores on Israeli entrance 

exams by 0.028 standard deviations 

This effect size closely matches Amanzadeh et al. (2019) and 

supports estimates that test-day exposure produces around 0.2-0.5x 

the effect of exposure throughout the year 

Note: my analysis (which estimates holistic effects rather than short-term effects) indicates that a one-standard-deviation increase in ambient PM 2.5 from 

mean levels decreases average test scores by 0.066 standard deviations 
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Table A3: Linear Regression Coefficients for Control Variables in Preferred Specification. Robust standard errors in parentheses. Suburb Status, Percent White, and 2009 Year were omitted from the regression trials as the reference 
group. ***p<0.01, **p<0.05, *p<0.1. 

Control Variables Average Scores Math ELA Average Scores Math ELA Average Scores Math ELA 

Urban Status (0-1) -0.0273 -0.0163 -0.0392 -0.0296 -0.0184 -0.0415 -0.0305 -0.0194 -0.0423 

 (0.0231) (0.0275) (0.0241) (0.0227) (0.0271) (0.0246) (0.0222) (0.0265) (0.0242) 

Town Status (0-1) 0.00235 -0.00127 0.00507 0.000698 -0.000799 0.00139 0.00198 0.000642 0.00251  
(0.0137) (0.0166) (0.0162) (0.0136) (0.0175) (0.0142) (0.0143) (0.0186) (0.0144) 

Rural Status (0-1) -0.00781 -0.0156 -0.000487 -0.00447 -0.0112 0.00126 -0.00454 -0.0112 0.00115  
(0.0137) (0.0123) (0.0197) (0.0154) (0.0144) (0.0202) (0.0154) (0.0147) (0.0202) 

Percent Native American -0.00169 0.0977 -0.0956 -0.0956 -0.0545 -0.137 -0.0979 -0.0577 -0.139  
(0.281) (0.290) (0.296) (0.113) (0.123) (0.114) (0.110) (0.121) (0.112) 

Percent Asian 0.121* 0.235** 0.00845 0.185** 0.297*** 0.0728 0.188** 0.300*** 0.0751  
(0.0594) (0.0917) (0.0656) (0.0700) (0.101) (0.0662) (0.0697) (0.0995) (0.0666) 

Percent Hispanic -0.0711 -0.0579 -0.0837 -0.0345 -0.0245 -0.0458 -0.0356 -0.0263 -0.0465  
(0.0708) (0.0725) (0.0741) (0.0683) (0.0664) (0.0748) (0.0684) (0.0658) (0.0752) 

Percent Black -0.418** -0.408 -0.418** -0.409** -0.353* -0.453*** -0.416** -0.362* -0.457***  
(0.188) (0.255) (0.157) (0.150) (0.197) (0.133) (0.154) (0.204) (0.135) 

Percent Free and Reduced  -0.0528 -0.0562 -0.0491 -0.0713* -0.0550 -0.0884** -0.0689* -0.0519 -0.0865** 

Lunch (0.0315) (0.0432) (0.0303) (0.0381) (0.0523) (0.0337) (0.0370) (0.0517) (0.0325) 

Percent English Language -0.0359 -0.0682*** -0.00397 -0.0465*** -0.0952*** 0.00342 -0.0471** -0.0960*** 0.00294 

Learners (0.0230) (0.0206) (0.0395) (0.0158) (0.0238) (0.0261) (0.0161) (0.0240) (0.0265) 

Percent Special Education -0.103 -0.140 -0.0579 -0.0726 -0.106 -0.0357 -0.0728 -0.106 -0.0360  
(0.0903) (0.128) (0.0897) (0.0585) (0.0948) (0.0615) (0.0565) (0.0935) (0.0601) 

Total Enrollment -8.82e-06 -4.50e-06 -1.31e-05 -1.02e-05 -4.35e-06 -1.64e-05 -1.11e-05 -5.40e-06 -1.71e-05  
(9.23e-06) (5.20e-06) (1.39e-05) (1.00e-05) (5.78e-06) (1.50e-05) (9.96e-06) (5.68e-06) (1.50e-05) 

Median Income ($) 2.40e-07 5.69e-07 -1.33e-07 2.04e-07 5.28e-07 -1.64e-07 1.55e-07 4.70e-07 -2.03e-07  
(4.38e-07) (5.55e-07) (4.66e-07) (4.76e-07) (5.24e-07) (5.50e-07) (4.59e-07) (5.08e-07) (5.38e-07) 

Percent of Adults with at  0.216 0.335* 0.0974 0.159 0.270 0.0548 0.159 0.271 0.0550 

Least a Bachelor’s Degree (0.142) (0.159) (0.159) (0.136) (0.157) (0.160) (0.135) (0.156) (0.160) 

Unemployment Rate 0.0925 0.295 -0.112 0.204 0.445* -0.0349 0.216 0.459* -0.0251  
(0.184) (0.180) (0.231) (0.234) (0.239) (0.261) (0.227) (0.233) (0.256) 

Proportion of Single  -0.151 -0.257 -0.0531 -0.125 -0.261 0.000990 -0.118 -0.253 0.00762 

Mother Households (0.130) (0.152) (0.123) (0.154) (0.168) (0.149) (0.156) (0.167) (0.155) 

2010.Year  0.0179*** 0.0221*** 0.0137* 0.0159** 0.0198*** 0.0121* 0.0157** 0.0194*** 0.0119* 

 (0.00602) (0.00665) (0.00647) (0.00613) (0.00641) (0.00665) (0.00598) (0.00628) (0.00649) 

2011.Year 0.0296** 0.0298*** 0.0294* 0.0228** 0.0184* 0.0278** 0.0222** 0.0177* 0.0273**  
(0.0111) (0.00976) (0.0143) (0.00904) (0.00916) (0.0110) (0.00879) (0.00894) (0.0107) 

2012.Year 0.0529*** 0.0396*** 0.0662*** 0.0421*** 0.0298* 0.0543*** 0.0414*** 0.0290* 0.0537***  
(0.0119) (0.0129) (0.0122) (0.0138) (0.0142) (0.0137) (0.0133) (0.0137) (0.0133) 

2013.Year 0.0662*** 0.0416** 0.0907*** 0.0552*** 0.0313** 0.0787*** 0.0543*** 0.0302** 0.0779***  
(0.0160) (0.0146) (0.0192) (0.0154) (0.0147) (0.0173) (0.0148) (0.0140) (0.0168) 

2015.Year 0.0373** 0.0226 0.0522** 0.0269 0.0154 0.0388* 0.0327 0.0222 0.0435*  
(0.0170) (0.0192) (0.0195) (0.0191) (0.0214) (0.0208) (0.0191) (0.0206) (0.0215) 

2016.Year 0.0557*** 0.0274 0.0844*** 0.0394* 0.0160 0.0630*** 0.0453** 0.0230 0.0678***  
(0.0147) (0.0166) (0.0175) (0.0189) (0.0224) (0.0185) (0.0190) (0.0218) (0.0193) 

2017.Year 0.0816*** 0.0469*** 0.116*** 0.0739*** 0.0405** 0.108*** 0.0783*** 0.0458*** 0.111***  
(0.0151) (0.0148) (0.0198) (0.0145) (0.0151) (0.0188) (0.0151) (0.0153) (0.0195) 

2018.Year 0.0724*** 0.0471*** 0.0974*** 0.0654*** 0.0410** 0.0898*** 0.0701*** 0.0465*** 0.0937***  
(0.0161) (0.0135) (0.0231) (0.0155) (0.0140) (0.0219) (0.0161) (0.0142) (0.0225) 

Constant 1.681*** 1.581*** 1.783*** 1.637*** 1.575*** 1.703*** 1.641*** 1.579*** 1.706***  
(0.0640) (0.0859) (0.0635) (0.0634) (0.0775) (0.0642) (0.0631) (0.0776) (0.0641) 

Included Pollution Variable PM 2.5 PM 2.5 PM 2.5 G.W. Threats G.W. Threats G.W. Threats Solid Waste Solid Waste Solid Waste 

Error Clustering Level Commute Zone Commute Zone Commute Zone Commute Zone Commute Zone Commute Zone Commute Zone Commute Zone Commute Zone 

Observations 10,964 5,486 5,478 11,554 5,782 5,772 11,554 5,782 5,772 

 N districts 712 710 711 723 720 722 723 720 722 

R2 (within districts; between 

districts; overall – see Table 2) 

0.047; 0.490;  

0.495 

0.032; 0.536; 

0.553 

0.112; 0.299;  

0.289 

0.038; 0.511;  

0.482 

0.028; 0.569;  

0.537 

0.086; 0.301;  

0.264 

0.038; 0.497;  

0.474 

0.028; 0.552;  

0.526 

0.087; 0.301; 

0.266 
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Table A4: Regression Results using the CS Grading Scale as a Robustness Testa, with Different Error Clustering Levels 

Test Subject Average Math ELA Average Math ELA Average Math ELA Average Math ELA 

PM 2.5 -0.00376** -0.000511 -0.00709*** -0.00376 -0.000511 -0.00709*** -0.00376 -0.000511 -0.00709*** -0.00361 -4.01e-05 -0.00722** 

 (0.00166) (0.00330) (0.00196) (0.00233) (0.00281) (0.00242) (0.00256) (0.00339) (0.00264) (0.00270) (0.00345) (0.00283) 

Groundwater Threats -0.000129 -0.000169* -9.23e-05 -0.000129 -0.000169 -9.23e-05 -0.000129 -0.000169** -9.23e-05 -0.000134 -0.000170* -9.88e-05 

 (7.48e-05) (8.27e-05) (8.69e-05) (0.000114) (0.000142) (0.000110) (9.74e-05) (8.13e-05) (0.000119) (0.000104) (8.75e-05) (0.000127) 

Solid Waste -0.00293** -0.00347** -0.00239* -0.00293* -0.00347** -0.00239 -0.00293* -0.00347** -0.00239 -0.00318* -0.00419** -0.00216 

 (0.00109) (0.00145) (0.00135) (0.00168) (0.00173) (0.00215) (0.00150) (0.00150) (0.00206) (0.00159) (0.00155) (0.00211) 

Error Clustering 

Level 

Commute 

Zone 

Commute 

Zone 

Commute 

Zone 

District District District County County County Metro Area Metro Area Metro Area 

aFor this regression specification, the dependent variable is natural log of positive-transformed test scores on the CS scale and each pollution 

variable was input one at a time (i.e., each regression coefficient represents a separate regression trial). Robust standard errors in parentheses. 

Control variables and constants omitted. *** p<0.01, ** p<0.05, * p<0.1. 

 

Table A5: Regression Results from the Preferred Specificationa, with Error Clustering at Different Levels as a Robustness Test.  

Test Subject Average Math ELA Average Math ELA Average Math ELA 

PM 2.5 -0.00457 -0.000255 -0.00897*** -0.00457 -0.000255 -0.00897*** -0.00433 0.000455 -0.00916** 
 (0.00299) (0.00358) (0.00314) (0.00321) (0.00427) (0.00327) (0.00339) (0.00434) (0.00353) 

Groundwater Threats -0.000197 -0.000240 -0.000157 -0.000197 -0.000240** -0.000157 -0.000202 -0.000242** -0.000165 

 (0.000165) (0.000198) (0.000162) (0.000130) (0.000107) (0.000159) (0.000139) (0.000114) (0.000170) 

Solid Waste -0.00338 -0.00392* -0.00285 -0.00338 -0.00392** -0.00285 -0.00361 -0.00480** -0.00240 

 (0.00226) (0.00226) (0.00289) (0.00203) (0.00187) (0.00282) (0.00215) (0.00193) (0.00285) 

Hazardous Waste 0.00806 0.0103* 0.00564 0.00806 0.0103 0.00564 0.00860 0.0102 0.00672 

 (0.00579) (0.00546) (0.00770) (0.00704) (0.00859) (0.00633) (0.00700) (0.00870) (0.00611) 

Impaired Water Bodies 2.23e-06 0.00336 -0.00353 2.23e-06 0.00336 -0.00353 0.000295 0.00383 -0.00341 

 (0.00292) (0.00314) (0.00353) (0.00264) (0.00289) (0.00336) (0.00264) (0.00309) (0.00312) 

Cleanup Sites 8.44e-06 -5.87e-05 -9.35e-06 8.44e-06 -5.87e-05 -9.35e-06 0.000471 0.000360 0.000513 

 (0.00128) (0.00157) (0.00132) (0.00123) (0.00155) (0.00128) (0.00122) (0.00161) (0.00125) 

Traffic -1.16e-05 -1.98e-05 -3.76e-06 -1.16e-05 -1.98e-05 -3.76e-06 -1.18e-05 -2.05e-05 -3.55e-06 

 (1.16e-05) (1.62e-05) (1.27e-05) (1.01e-05) (1.52e-05) (1.13e-05) (1.23e-05) (1.72e-05) (1.22e-05) 

Error Clustering Level District District District County County County Metro Area Metro Area Metro Area 
aFor the Preferred specification, the dependent variable is natural log of grade levels (on the GCS scale) and each pollution variable was input one 

at a time (i.e., each regression coefficient represents a separate regression trial). Robust standard errors in parentheses. Control variables and 

constants omitted. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A6: Regression Results with All Pollution Variables Included Simultaneouslya and with Different Error Clustering Levels  

Test Subject Average Math ELA Average Math ELA Average Math ELA Average Math ELA 

PM 2.5 -0.00494** -0.000895 -0.00907*** -0.00494* -0.000895 -0.00907*** -0.00494 -0.000895 -0.00907*** -0.00475 -0.000331 -0.00921** 

 (0.00211) (0.00414) (0.00255) (0.00291) (0.00350) (0.00304) (0.00319) (0.00418) (0.00331) (0.00334) (0.00420) (0.00358) 

Groundwater Threats -3.90e-05 -5.83e-05 -2.75e-05 -3.90e-05 -5.83e-05 -2.75e-05 -3.90e-05 -5.83e-05 -2.75e-05 -3.99e-05 -5.05e-05 -3.54e-05 

 (0.000150) (0.000144) (0.000158) (0.000138) (0.000188) (0.000127) (0.000131) (0.000121) (0.000146) (0.000142) (0.000135) (0.000157) 

Solid Waste -0.00330 -0.00350 -0.00311 -0.00330 -0.00350 -0.00311 -0.00330 -0.00350 -0.00311 -0.00344 -0.00445* -0.00243 

 (0.00208) (0.00208) (0.00285) (0.00250) (0.00240) (0.00328) (0.00263) (0.00241) (0.00343) (0.00280) (0.00254) (0.00344) 

Traffic -8.76e-06 -1.41e-05 -3.83e-06 -8.76e-06 -1.41e-05 -3.83e-06 -8.76e-06 -1.41e-05 -3.83e-06 -9.24e-06 -1.50e-05 -4.00e-06 

 (9.03e-06) (1.52e-05) (7.38e-06) (1.15e-05) (1.54e-05) (1.21e-05) (9.99e-06) (1.50e-05) (1.00e-05) (1.23e-05) (1.71e-05) (1.11e-05) 

Cleanup Sites -0.000127 -2.86e-06 -0.000308 -0.000127 -2.86e-06 -0.000308 -0.000127 -2.86e-06 -0.000308 0.000345 0.000420 0.000228 

 (0.00114) (0.00138) (0.000939) (0.00125) (0.00156) (0.00125) (0.00115) (0.00141) (0.00123) (0.00111) (0.00143) (0.00117) 

Hazardous Waste 0.00722 0.00956 0.00478 0.00722 0.00956* 0.00478 0.00722 0.00956 0.00478 0.00746 0.00915 0.00563 

 (0.00605) (0.00762) (0.00557) (0.00593) (0.00533) (0.00806) (0.00705) (0.00857) (0.00640) (0.00697) (0.00871) (0.00607) 

Impaired Water Bodies 0.000684 0.00370 -0.00248 0.000684 0.00370 -0.00248 0.000684 0.00370 -0.00248 0.000991 0.00420 -0.00237 

 (0.00248) (0.00332) (0.00290) (0.00286) (0.00305) (0.00342) (0.00242) (0.00279) (0.00297) (0.00259) (0.00303) (0.00300) 

Error Clustering 

Level 

Commute 

Zone 

Commute 

Zone 

Commute 

Zone 

District District District County County County Metro Area Metro Area Metro Area 

aFor this regression specification, the dependent variable is natural log grade levels (on the GCS scale) and each pollution variable was input 

simultaneously (i.e., in the same regression trial). Robust standard errors in parentheses. Control variables and constants omitted.  

*** p<0.01, ** p<0.05, * p<0.1. 
 


