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Introduction
Local pollutants impact children’s development, health, and 
learning ability. Examples include the effects of lead poison-
ing,1 pre-natal exposure to EPA Superfund sites,2 and proxim-
ity to certain industrial facilities.3,4 The research presented here 
contributes to a growing body of findings establishing various 
forms of air pollution exposure as an additional determinant of 
primary school academic outcomes. This paper offers a novel 
approach by estimating the cumulative effects of average dis-
trict-wide exposure over the previous 6 years to fine particulate 
matter (PM 2.5) on average district-wide performance on 
sixth-grade standardized tests.

Air pollutants, such as PM 2.5, accumulate in ambient air 
through various anthropogenic and naturally occurring 
mechanisms. Particulate matter, ozone, and nitrous oxides 
(often byproducts of fuel combustion for transportation or 

industrial activity) are the primary components of “smog” in 
urbanized areas that have led to increased incidences of 
asthma, lung cancer, and heart disease.5-8 Wildfire smoke, 
dust, pollen, and other fine particulates from natural pro-
cesses can lead to harmful exposure levels in various geogra-
phies, depending on the source and concurrent weather 
patterns.9,10 The localized concentration of fine particulate 
matter (PM 2.5) in ambient air can vary over time due to a 
wide range of factors, whether human-caused or naturally 
occurring (eg, changes in economic activity or pollution 
mitigation measures or changing weather patterns that 
bring in PM 2.5 from distant sources). Estimates show that 
PM 2.5 alone contributes to thousands of annual premature 
deaths in California, particularly in the San Joaquin Valley 
and other regions that have some of the highest average PM 
2.5 levels in the U.S.11,12
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In addition to the respiratory health implications of air pol-
lution exposure, recent research also points to cognitive harm 
in a wide variety of groups, such as chess players,13 baseball 
umpires,14 stock traders,15 politicians,16 and office workers.17 
The effect of air pollution on a child’s academic performance in 
primary school is multifaceted. Chronic exposure in daily life 
can harm development and cause nonattendance, while acute 
exposure at school may impair cognitive function on test day. 
Understanding the effect of factors inside and outside the 
classroom on academic achievement is critical, as students’ suc-
cess in school strongly predicts their future earnings and eco-
nomic mobility.18-20 i This research adds to the many studies 
establishing a meaningful connection between exposure to air 
pollutants such as PM 2.5 and classroom performance. 
Nevertheless, we offer a unique perspective by estimating the 
effect of cumulative exposure at the school district level over 
the 6 years prior to testing.

Our analysis matches average test score data from California 
public school districts compiled by the Stanford Education 
Data Archive (SEDA21) with PM 2.5 concentration data col-
lected in the CalEnviroScreen database (CES22) by Census 
Tract, which serves as a proxy for ambient exposure at indi-
vidual school sites and is used to derive our estimate of average 
district-wide exposure. Figure 1 shows a negative relationship 
between average PM 2.5 concentration for California school 
districts and average academic achievement. A multivariate 
regression analysis is necessary to establish this visual negative 
relationship as likely causal, and to estimate the magnitude of 
the observed effect of PM 2.5 while holding other causal fac-
tors constant. Using a data panel with multiple years of test 
scores and PM 2.5 concentration estimates enables the inclu-
sion of school district and year-fixed effects, further establish-
ing our model’s robustness and supporting our causal inference. 
While a more experimental design may further mitigate the 

potential for confounding variables, the benefit of our approach 
is the ability to identify cumulative impacts.

We next offer a literature review summarizing prior studies 
on the relationship between local air pollution and test scores. 
A third section contains descriptive information on the data-
sets used in our regression analysis, while the regression model 
and methodological considerations are in Section 4. The fol-
lowing two sections include the regression results and tests 
supporting the robustness of our findings. Section 7 discusses 
regression findings, a comparison to prior studies, implications 
for policymakers, and ideas for future research. The paper’s 
final section highlights key findings and recommendations.

Literature Review
While standardized test scores do not entirely reflect a student’s 
abilities or future potential, many believe they are a reasonable 
proxy for acquiring academic knowledge that correlates posi-
tively with later-in-life economic outcomes. The following 
review summarizes the relationship between various forms of air 
pollution and test scores and explores the findings and limita-
tions of prior studies that specifically examine this relationship.

Causality

The effect of a primary school student’s long-term exposure 
to local air quality on their performance on standardized tests 
occurs through multiple pathways. Appendix Table A1 sum-
marizes previous empirical findings attempting to detect 
these pathways. For example, PM 2.5 can cause chronic res-
piratory illnesses such as asthma, leading to fatigue, school 
absences, and impaired learning. Exposure to localized air 
pollution may also damage long-term brain development. 
Even short-term exposure can cause cognitive impairment 
that influences classroom performance regardless of health 
status. Such relationships are complex, and the methodology 
of studies that examine these interactions only captures a sub-
set of possible causal pathways.

Quasi-experimental studies are most effective at controlling 
for omitted variable bias. Still, their short-term temporal focus 
can only offer results reflecting the marginal impact of changes 
in pollution exposure over the time examined. This marginal 
effect of local air pollution on test day alone23 or following an 
exogenous shock in ambient pollution levels24 is likely much 
weaker than the cumulative impact of exposure throughout a 
child’s development. Most prior studies identify the air pollu-
tion effect through broad outdoor ambient concentrations or 
proxy indicators,ii which are fair measurements of student 
exposure over time but may not account for short-run idiosyn-
cratic differences in the outdoor and indoor air quality at 
school, which is not typically measured.iii As employed here, a 
study with multiple years of data and adequate controls cap-
tures a more collective estimate of chronic pollution impacts.

Figure 1. Scatter plot and simple regression.
Data based on a California school district’s average overall academic 
achievement on standardized test scores in academic years from 2015/16 to 
2018/19 and the average fine particulate matter in the district accounts for a 
rolling average from the previous 6 years from when the test score registered. PM 
2.5 regression coefficient = −0.08 (P < .001); R-squared = 0.021.
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Regression studies

Some previous studies on this issue use a single cross-section of 
observations and multivariate regression analysis to examine 
the influence of various pollutants on test scores. Mohai et al4 
overlap Michigan public school sites with the federal EPA’s 
Toxic Release Inventory (TRI) for industrial facilities, which 
tracks over 650 toxic compounds emitted into the air or water 
or sent to land disposal,25 Students at schools in the highest 
quintile of toxic pollution exposure have attendance rates of 
0.13 standard deviations lower than those in the lowest quintile 
and 0.05 standard deviations lower testing proficiency rates. 
Pastor et al3 find similar results for Los Angeles area schools 
within 1 mi of industrial facilities that release toxins measured 
by the TRI. However, these studies only include 1 year of data 
and thus cannot control for school or school-district fixed 
effects. Ham et  al26 examine California public elementary 
schools by Census tract and find adverse effects of ozone, fine 
particulate matter (PM 2.5), and coarse particulate matter (PM 
10) for both math and English Language Arts (ELA) scores. 
This study estimates that reducing PM 10 exposure at low-
SES schools to the levels typically at high-SES schools would 
close the proficiency gap in ELA by 0.3% and in math by 0.5%. 
Ham et al26 include multiple years of data and appropriate con-
trols for year and school-level fixed effects. Additional studies 
using this multivariate regression approach include Kim et al27 
and Strayhorn and Strayhorn Jr28, which find ongoing detri-
mental impacts of elevated childhood blood levels of manga-
nese and lead.

Natural experiments

Other studies attempt to isolate the effect of local pollution lev-
els on K-12 test scores using a quasi-experimental approach, 
where temporal variation in pollution exposure to the same 
group or classification of students demonstrates that subsequent 
changes in test scores are more likely causal. Austin et al29 exam-
ine a Georgia State school district that modified school buses to 
mitigate emissions from diesel combustion. They find that ret-
rofitting an entire bus fleet would improve ELA scores by 0.09 
standard deviations – approximately equal to the expected per-
formance gains in their data from an additional 5 years of 
teacher experience. Persico and Venator30 study openings and 
closures of industrial facilities with TRI emissions and find that 
attending school within 1 mile of a facility is associated with 
lower test scores of 0.024 of a standard deviation. Heissel et al31 
show that children transitioning from primary to secondary 
education had lower test scores, more absences, and more 
behavioral incidents if they moved to a school downwind of 
highway pollution. Gilraine32 examines air filters installed in 18 
schools in response to the 2015 Aliso Canyon natural gas leak 
in Southern California and finds that the schools with the fil-
ters saw math scores improve by 0.2 standard deviations over 

the following 4 months. Duque and Gilraine33 measure the 
effect of coal-fired power production as a proxy for air pollution 
exposure and find that every 1 million megawatt-hours of coal 
generation decreases math scores at schools within 10 km of the 
facility by 0.02 standard deviations. A few studies, including 
Zhang et al,34,iv Roth,35 and Carneiro et al,36 use a quasi-exper-
imental approach to estimate the specific effect of coarse par-
ticulate matter (PM 10) concentration. However, they cannot 
distinguish the effects of PM 10 and fine particulate matter 
(PM 2.5) since the latter is a subset of the former in terms of 
particle size.

Further confirmation desirable

Existing studies find adverse effects of local air pollutants on 
standardized test scores. The marginal effect of an increase in a 
particular pollutant is not necessarily linear and may vary across 
student groups and test types. For example, Amanzadeh et al23 
report that high ambient PM 2.5 and PM 10 levels on test day 
affect male students more than female students and math 
scores more than ELA scores. In contrast, Austin et al29 find 
that diesel exhaust only affects ELA scores, not math scores. 
Ham et al26 and Mohai et al4 find adverse effects of local air 
pollution on ELA and math scores, though effects vary by spe-
cific pollutant. Other studies do not measure or distinguish the 
effects of specific air pollutants, and few studies attempt to 
identify cumulative rather than contemporaneous effects. As 
our study explicitly examines the long-run effect of PM 2.5 on 
student achievement, we include Appendix Table A2, which 
summarizes the previous research on the effects of PM 2.5 and 
compares effect sizes based on the time horizon of analysis.

Data
As a measure of academic achievement, we employ spring 2015 
through spring 2018 annual sixth-grade standardized test score 
data from California public school districts with greater than 
50 students obtained from the Stanford Education Data 
Archive (SEDA21). Compiled in an accessible nationwide 
dataset, SEDA uses state-level annual proficiency counts and 
standardizes these measures to grade-level equivalency using 
the state’s scores from the National Assessment of Education 
Progress (NAEP) test. As Fahle et al37 note, doing so requires 
interpolating NAEP scores for unavailable grades and years 
and assuming normal distributions for district test scores.v 
Kuhfeld et  al38 suggest that it is reasonable to use SEDA 
achievement measures if one desires a measure of K-12 aca-
demic achievement that is directly comparable across United 
States school districts.

SEDA compiles its data using two different scales, denoted 
as “cohort standardized” (CS) and “grade cohort standardized” 
(GCS). The units for the CS scale are positive or negative 
standard deviations of difference relative to the NAEP national 
reference cohort. Estimates relying on the GCS scale measure 



4 Environmental Health Insights 

grade-level proficiency relative to a reference cohort. We use 
the GCS measure here due to its more straightforward inter-
pretation and the desire for logarithmic representation. From 
SEDA, we also include the appropriate time-varying measures 
of school district characteristics as covariates in the regression 
analysis that control for potential determinants of academic 
outcomes beyond local pollution. Using SEDA data rather 
than state-level test score data facilitates comparison with 
future studies on the effect of exposure to various measures of 
local air pollution in other U.S. geographies through a compa-
rable measure of academic achievement available for all U.S. 
school districts. As discussed below, we also offer a robustness 
test of our preferred regression specification by reporting on 
results derived through the alternative use of California-
specific test data.

We examine only test scores from California due to the 
availability of a rich data set on measures of localized pollution 
in this state. We chose sixth-grade test scores since they meas-
ure the cumulative effects of PM 2.5 exposure over a reasonable 
period and contain the desired number of longitudinal 
observations.vi Corresponding PM 2.5 concentrations come 
from all the available releases of CalEnviroScreen (CES, release 
2.0 through 4.0), which include PM 2.5 measurements for the 
six calendar years necessary to derive the average standardized 
test score used as the dependent variable in the regression. CES 
is a tool developed by the California Office of Environmental 
Health Hazard Assessment (OEHHA) that tabulates pollu-
tion measures by Census tract.39,vii The CES measurement of 
PM 2.5 by Census tract represents the annual average concen-
tration. A distance-weighting algorithm prioritizes direct air 
pollution measurements from approximately 140 local air 
monitors in California. At the same time, gaps in coverage are 
filled with satellite data collected over standardized one-
square-kilometer cells.viii Though CES includes 13 total pollu-
tion indicators, only PM 2.5 is sufficiently consistent in 
methodology across CES versions for assembling a data panel 
that aligns with the available SEDA test score years.

Table 1 includes a brief description of each variable used in 
this study. In the next section, we summarize the methodology 
behind this study and the underlying theoretical relationship 
between standardized test performance as a dependent variable 
and various determining factors, including pollution exposure.

Methodology
Our methodology ensures a robust estimate of PM 2.5 
impacts on test scores. To measure average exposure in a 
school district to the PM 2.5 variable in the CalEnviroScreen 
(CES) database, we first used GIS mapping to match every 
California public school site in the included school districts 

to their corresponding Census tract(s).ix We then construct a 
lagged data panel that connects district scores on math, ELA, 
and overall for school years 2014 to 2015, 2015 to 2016, 2016 
to 2017, and 2017 to 2018 with a rolling average PM 2.5 
pollution score reflecting CES data measurement timeframes 
and approximates student exposure over the 6 calendar years 
preceding each test year (see Table 2). These district averages 
do not estimate pollution exposure at a specific school site. 
Instead, they measure average exposure across an entire 
school district. This is perhaps a more appropriate measure 
because many students, due to California’s open enrollment 
policies, attend an elementary school within the district 
where they live but not near their neighborhood school site. 
Thus, a measure of average exposure in a district better 
accounts for exposure outside of time spent at their school 
site. Our lagged panel data set enables the measurement of 
cumulative harms incurred from PM 2.5 in the years before 
testing and the measurement of how PM 2.5 exposure 
changes over time within each district.

The Stanford Education Data Archive (SEDA) also con-
tains student information for each school district and year of 
the analysis, which, besides PM 2.5, likely influences differ-
ences in average standardized test scores. We utilize these as 
controls in the regression analysis to produce a comprehen-
sive model of educational determinants and isolate the effect 
of cumulative fine particulate matter exposure. However, 
SEDA does not provide additional relevant explanatory vari-
ables like district-wide per-pupil expenditure, teacher experi-
ence, student-teacher ratio, administrative structure and 
practices, curriculum, extracurricular offerings, etc. To control 
for these factors in as much as they do not vary over the years 
observed, we take advantage of the panel structure of the data 
and include school-district fixed effects. Also included are 
year-fixed effects to control for temporal factors influencing 
average district-wide standardized test scores.x

Regression model

Our regression model captures the broad categories expected 
to influence differences in the three dependent variable meas-
ures of standardized test score achievement by grade-level 
equivalent used in our analysis. To ensure a robust and reliable 
assessment of PM 2.5 (Pollution) on academic performance, 
we include other relevant factors representing Demographic, 
Socioeconomic, Geographic, Academic, Year, and School 
District effects. Equations (2)–(8) offer the actual variables 
representing these broad categories at the nearly 600xi school 
districts used for this analysis, drawn from academic years 2014 
to 2015 through 2017 to 2018.
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Other methodological considerations
Our panel-data regression analysis, a novel approach to 
measuring the cumulative effects of air pollution exposure on 
academic performance, is susceptible to heteroskedasticity 
through residual errors that correlate across geographies. 
Most previous studies used one level of geographic error 
clustering (e.g., References26,40). Only Heissel et al31 reported 
regression results with various error clustering by the stu-
dent, school, and zip code. The ideal level of error clustering 
is not definite. As Cameron and Miller41 describe, clustering 
at more aggregate levels typically offers less bias but more 
variability, leading to larger regression coefficient standard 
errors and less statistical significance. Thus, without a clear 
theoretical imperative to do otherwise, a conservative 
approach favors error clustering at higher levels, which for 
the SEDA data is by commute zone.xiii

Our measure of PM 2.5 may also represent the potential 
differing effects of other common co-pollutants in ambient air. 
While we could not include other CES air pollution indicators 
in our regression trials due to data limitations across panel 
years, we can assess the level of correlation between these vari-
ables over a limited timeframe. Table 3 shows a small to mod-
erate level of correlation (as measured by Pearson’s r) between 
PM 2.5, Diesel PM, and Ozone – which we expect given that 
diesel particulates are typically less than 2.5 microns in 

diameter (ie, they are a subset of PM 2.5) and that these three 
air pollutants have some overlap by source and geographic dis-
tribution. Earlier studies such as Ham et al26 found high inter-
correlation between air pollutants and thus included each 
variable individually in regression trials, as multicollinearity 
may obscure the statistical significance of any individual pollu-
tion variable by biasing standard errors upwards. Similarly, we 
only include PM 2.5 as an independent pollution variable but 
note that some of the detected effects may be attributable to 
other geographically overlapping air pollutants. Additionally, 
we use the natural log of all grade equivalent average test out-
comes as the dependent variable to account for any non-linear 
relationships with the included explanatory variables. This 
offers the added benefit of regression coefficients representing 
the expected percentage change in a test score given a 1 -unit 
change in the measure of an explanatory variable.

A further methodological consideration is that the incre-
mental effect of air pollution differs based on concentration or 
geography/land use. Considering this, we conducted a quintile 
regression to determine whether the effects on test scores var-
ied by each quintile of PM 2.5 concentration.xiv We also exam-
ine whether the effect of PM 2.5 varies based on a district’s 
urban or rural status in response to previous studies, such as 
Kodros et al42, which found that the constituent compounds of 
ambient particulate matter are more toxic in urban areas.xv
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Table 1. Descriptive statistics.

DEPEnDEnT VARIAblES DESCRIPTIOn MEAn STD DEV MIn. MAx.

Overall SEDA GCS mean sixth-grade level scores in math 
and English language Arts (ElA)

5.54 1.64 0.57 12.32

Math SEDA GCS mean sixth-grade level scores in math 5.42 1.67 0.57 12.32

ElA SEDA GCS mean sixth-grade level scores in ElA 5.66 1.60 1.09 10.80

PoLLuTIon VARIABLES

PM 2.5a Average mean fine particulate matter concentration 
over the prior 6 y, micrograms per cubic meter

9.90 3.02 2.37 18.15

PM 2.5 quintile 1 First quintile of the annual average PM 2.5 
concentration

5.97 0.86 2.37 7.26

PM 2.5 quintile 2 Second quintile of the annual average PM 2.5 
concentration

8.10 0.40 7.27 8.67

PM 2.5 quintile 3 Third quintile of the annual average PM 2.5 
concentration

9.51 0.59 8.68 10.86

PM 2.5 quintile 4 Fourth quintile of the annual average PM 2.5 
concentration

11.66 0.34 10.86 12.14

PM 2.5 quintile 5 Highest quintile of the annual average PM 2.5 
concentration

14.28 1.76 12.15 18.15

ConTRoL VARIABLES

District Percent Urban 
Status

Decimal percentage of district students in city/urban 
locale schools

0.20 0.36 0.00 1.00

District Percent Town 
Status

Decimal percentage of district students in town 
locale schools

0.19 0.36 0.00 1.00

District Percent Rural 
Status

Decimal percentage of district students in rural 
locale schools

0.17 0.32 0.00 1.00

Percent native American Decimal percentage of district students native 
American

0.01 0.04 0.00 0.88

Percent Asian Decimal percentage of district students Asian 
American

0.10 0.13 0.00 0.78

Percent Hispanic Decimal percentage of district students Hispanic 
(latino) American

0.51 0.28 0.03 1.00

Percent black Decimal percentage of district students African 
American (black)

0.04 0.06 0.00 0.70

Percent Free Reduced 
lunch

Decimal percentage of district students enrolled in a 
free or reduced-price lunch program

0.56 0.26 0.01 1.00

Median Household Income District median household income in inflation-
adjusted dollars

65,329 26,807 22,201 217,112

Percent bachelor’s Degree Decimal percentage of district student households 
with one parent/guardian with a bachelor’s degree

0.28 0.18 0.00 0.84

Unemployment Rate Decimal percentage of district student households 
with one parent/guardian unemployed

0.08 0.03 0.00 0.19

Percent Single-Mother 
Households

Decimal percentage of district student households 
with single-mother head of household

0.17 0.05 0.02 0.36

Percent English language 
learners

Decimal percentage of district students are English 
learners

0.20 0.15 0.00 0.81

Percent Special Education Decimal percentage of district students classified in 
a special education program

0.11 0.03 0.00 0.22

Total Enrollment Student number in the district 833 2159 50 47,036

aDescriptive statistics for PM 2.5 are for all observations (all districts across all included years) in the dataset. The range of PM 2.5 concentrations within districts during 
the time frame of analysis is much narrower, as evident by the average standard deviation (0.20), average minimum (9.64), and average maximum (10.13).
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Table 2a. Measurement year for PM 2.5 by CES version.

POllUTIOn VARIAblE CES 2.0 CES 3.0 CES 4.0

PM 2.5 2011 2014 2017

Table 2b. lagged data panel construction, with 6-year lagged rolling average CES PM 2.5 scores.

POllUTIOn VARIAblE 2015 2016 2017 2018

PM 2.5 (3*CES 2.0 + 3*CES 
3.0) / 6

(2*CES 2.0 + 3*CES 
3.0 + 1*CES 4.0) / 6

(1*CES 2.0 + 3*CES 
3.0 + 2*CES 4.0) / 6

(3*CES 3.0 + 3*CES 
4.0) / 6

Finally, we consider the possibility of bias in our regression 
results due to student sorting effects or unobserved economic 
factors that correlate with PM 2.5 pollution. As mentioned, 
our study aims to identify cumulative pollution impacts by 
measuring the impact of average PM 2.5 concentrations expe-
rienced in the 6 years before testing for California school dis-
tricts. This approach offers an important point of comparison 
to other studies that measure only contemporaneous effects 
experienced in a limited timeframe immediately following a 
change in pollution levels. Such studies guard against omitted 
variable bias by including individual student fixed-effects or a 
cause-effect design that ensures consistency in student demo-
graphics or local conditions. While our effect identification is 
possibly less robust than these quasi-experimental studies, we 
have reasonable confidence that bias in our regression results 
will likely be minimal. The influence of potential sorting of 
high-achieving students within or between districts in response 
to PM 2.5 levels is likely mitigated by our suite of demographic 
and socioeconomic control variables (eg, race/ethnicity, district 
median income, percent subsidized lunch, unemployment rate, 
percent of parents with a bachelor’s degree), as these controls 
capture variation within districts over time in our panel data 
construction.xvi However, we cannot fully rule out local eco-
nomic conditions or other idiosyncratic factors that may cor-
relate with PM 2.5 levels for some observations in our dataset 
and are not otherwise captured by our district or year fixed-
effects or the time-varying geographic, demographic, or socio-
economic control variables.xvii

Results
Primary regression f indings

Our fixed-effects panel data regression investigation began by 
taking the natural log of all three grade-cohort standardized 

(GCS) dependent variable measures of a district’s average aca-
demic achievement (math, ELA, and overall) and clustering 
the standard errors at each of the four possible levels. Table 4 
presents the elasticity at the mean and the linear regression 
coefficient for the PM 2.5 variable, which shows that PM 2.5 
yielded a negative and statistically significant effect on all three 
available test score measures, regardless of the error clustering 
level used. Regarding effect size, we find that an “average” 
school district in California (with a PM 2.5 concentration of 
about 9.9 µg/m³ as indicated in Table 1) that experiences a 
1 -unit increase in this pollutant (ie, 1.0 µg/m³ or about one-
third of its standard deviation), holding other control variables 
constant, could expect overall grade equivalency for sixth grad-
ers to fall by about 4%.

Robustness tests

Our preferred specification uses the dependent variable of the 
SEDA grade-cohort-standardized (GCS) test score measure-
ment (derived from national NAEP testing). This grading 
scale offers readily interpretable units (grade-level achievement 
for sixth grade) that are directly comparable between school 
districts nationwide. However, SEDA also offers a cohort-
standardized (CS) grading scale that applies different meth-
odological assumptions. Appendix Table A3 includes regression 
trials that match our preferred specification except with test 
scores measured using the SEDA CS scale as the dependent 
variable.xviii The similarity of results, whether using the CS 
CGS calculated dependent variables, demonstrates the robust-
ness of our findings in this measurement change.

Separately, both SEDA scales are configurations of raw test 
score data that necessarily make assumptions for aggregating 
academic proficiency measures across states.38 Given the pos-
sibility that these aggregating assumptions could bias our PM 
2.5 findings, we ran additional regression tests using the same 
group of SEDA control variables and California-specific sixth-
grade test score data from the California Assessment of Student 
Performance and Progress (CAASPP) Smarter Balanced 
Assessments.43 These CDE test scores also measured overall, 
math, and English Language Arts (ELA) achievements by 
mean scaled score and the percent of students that met or 
exceeded grade standards. We include the resulting regression 
results in Appendix Table A4, with descriptive statistics for 

Table 3. Air pollution variable correlation coefficients (Pearson’s r) for 
2015 only.

AIR POllUTAnT PM 2.5 DIESEl PM OzOnE

PM 2.5 1.0  

Diesel PM 0.32 1.0  

Ozone 0.52 −0.12 1.0
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these alternative test measures in Appendix Table A5. The 
alternative regression findings, using the California-specific 
CAASPP test score data, still show statistical significance for 
the negative effect of PM 2.5 on overall and ELA scores. 
However, the level of statistical significance for the negative 
effect of PM 2.5 exposure on the CAASPP mean scaled score 
for math is only just above the 84% confidence level in a two-
tailed test. While we detected a negative effect for PM 2.5 
exposure on the percent standard met and above for math, it is 
only statistically significant at the 64% confidence level in a 
two-tailed test. These findings, though not entirely confirming 
in the case of comparing California-specific CAASPP math 
outcomes to nationally normalized SEDA math outcomes, 
instill some level of confidence that the potential bias of using 
the SEDA data set is not large enough to change our primary 
finding that fine particulate matter does exert a negative influ-
ence on sixth-grade standardized test outcomes, at least for 
ELA and overall scores. The discrepancy in the math finding 
for CAASPP outcomes may mimic the same reasons already 
offered for this research not exerting as large an influence on 
math outcomes. Given the general alignment in regression 
results between the SEDA data and the CAASPP data, we are 
confident in using the SEDA data to conduct our various forms 
of regression analysis.

Interaction and quintile regression f indings

In addition to deriving the average linear effects of air pollu-
tion as a continuous variable, we also tried including a set of 

dummy variables that account for where the previous 6-year 
average of PM 2.5 in the district fell within the quintile distri-
bution of PM 2.5 data across all districts and observed times.xix 
Our inspiration for doing this comes from Mohai et al4 and 
Pham and Roach,44 who examined the effect of different air 
pollution measures on student proficiency and attendance 
rates by concentration quintiles.xx These quintile regression 
results illuminate potential non-linearity in the air pollution 
effect that offers potentially relevant policy implications. As 
shown in Table 5, using the results for overall test scores, the 
effect of PM 2.5 becomes increasingly negative when moving 
from the lowest quintile (the base case in the regression) to the 
higher quintiles.xxi However, it is worth noting that we detect 
that the changes in this effect levels off at the highest quin-
tiles. Figure 2 illustrates a simulated drop in grade-level 
achievement from moving to higher levels of PM 2.5 expo-
sure. Specifically, moving to quintile two of PM 2.5 exposure 
represents a 3.1% decrease in grade-level achievement relative 
to quintile one, and respectively, moving to quintiles three, 
four, and five decreases overall grade-level achievement by 4.3, 
4.6, and 4.6% points relative to quintile one.

Kodros et al42 find that the marginal effect of air pollution 
on test scores varies by geography and land use. They speculate 
this is due to differences in the types of chemical compounds 
found in the particulates suspended in ambient air, which may 
vary by the source of the particulates (eg, wildfires versus indus-
trial manufacturing). To examine the relevance of this finding 
with our data set, we added an interaction term between PM 
2.5 and a school district’s urban or rural makeup into our 

Table 5. Quintile regression results.

TEST SUbJECT OVERAll MATH ElA

PM 2.5 quintile 2 −0.0313** −0.0444** −0.0186

 (0.0116) (0.0161) (0.0124)

PM 2.5 quintile 3 −0.0428** −0.0500** −0.0372*

 (0.0172) (0.0211) (0.0180)

PM 2.5 quintile 4 −0.0457** −0.0351 −0.0578*

 (0.0201) (0.0276) (0.0305)

PM 2.5 quintile 5 −0.0458* −0.0434 −0.0487

 (0.0240) (0.0313) (0.0295)

Constant 1.790*** 1.709*** 1.891***

 (0.117) (0.0813) (0.180)

observations 3945 1977 1968

number of districts 579 578 578

R-squared (within districts,
between districts;
overall)

0.032; 0.112; 0.123 0.026; 0.233; 0.259 0.088;
0.002;
0.005

A joint significance test for the inclusion of PM 2.5 quintiles shows that, for overall scores, P = .07; for math scores, P = .06; and for ElA scores, P = .20. Though the 
quintile effects of PM 2.5 on ElA may not be jointly significant (P < .1), we still include them for illustrative purposes. The quintile regression analyses include control 
variables, which are not included in this table. Robust standard errors are in parentheses with ***P < .01, **P < .05, *P < .1.
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Figure 2. Quintile regression results.
This figure includes three (overall, math, and ElA) simulated average grade-level 
achievement district test scores (SEDA GCS Scale) for sixth graders for each 
PM 2.5 pollution concentration quintile. We calculate simulated district averages 
for each quintile by setting the value of other quintile dummy variables to zero 
and multiplying control variable regression coefficients by the average value 
for each variable. Trendlines connecting the five predicted points are illustrative 
and do not represent continuous data. Evidence of this relationship is present in 
the statistical significance of most particulate matter quintile dummy variables 
included in Table 5 and an appropriate F-test that the null hypothesis of all 
quintile regression coefficients equal zero when included in regressions that use 
the test score measures as dependent variables.

preferred regression specification. We have not included these 
findings because, in all cases, this exercise yielded no statisti-
cally significant (P < .1) findings.

Discussion
Comparison of PM 2.5 effects on math, ELA, and 
overall scores

We have found that fine particulate matter in ambient air nega-
tively affects math, English Language Arts (ELA), and overall 
SEDA test scores measures in terms of grade-level equivalency. 
Interestingly, the magnitude of the effect appears to be greater 
for ELA scores in the linear regression analyses yet larger for 
math in the low to median quintiles of exposure (Tables 4 and 5), 
suggesting possible nonlinearity and different causal mecha-
nisms depending on test type. Ham et  al26 and Austin et  al29 
attempted to differentiate the pollution effect by test type. Both 
studies find that PM 2.5 more strongly affects ELA scores. 
Other studies examining air pollution and test scores do not dif-
ferentiate math from ELA. It is possible that ELA testing or 
learning requires greater cognitive focus and is more susceptible 
to an acute or chronic pollution effect. However, the comprehen-
sion of this potential causal mechanism is incomplete. Thus, we 
suggest further research to examine the different causal paths by 
which pollution exposure affects different test subjects.

Effect size analysis

Appendix Table A2 presents a detailed comparison of effect 
sizes from prior studies. It shows that the effect we find for PM 
2.5 on test scores is generally larger than previously detected. 
For example, the finding in Gilraine and Zheng40 that 1 µg/m³ 
increase in ambient PM 2.5 decreases subsequent average test 

scores by 0.02 standard deviations is comparable to our finding 
after the following translation. Using the regression coefficient 
of −0.041 found in column 1 of Table 4 and the average district 
grade-level achievement for California sixth graders (5.54), the 
derived effect of a 1 -unit increase in PM 2.5 on the natural log 
of overall test scores translates into a 0.22 (−0.041 * 5.54) drop 
in grade-level equivalence. This effect represents a 0.136 stand-
ard deviation decrease in overall test scores, that is, 6 to 7 times 
the effect size found in Gilraine and Zheng.40

Typically, studies such as Gilraine and Zheng40 that com-
pare average exposure between schools or districts over an 
entire school year find an effect that is much larger than studies 
such as Amanzadeh et al23 that only measure the effect from 
elevated exposure on test day. This relationship is logical as 
pollution-induced learning loss may compound across addi-
tional instances of exposure. Since our study examines an even 
longer time frame of exposure (the prior 6 years), it thus follows 
that we would find an even more substantial effect than studies 
examining pollution exposure either only on test day or in the 
preceding months.

Policy implications

Existing research suggests that exposure to elevated levels of 
particulate matter in ambient air likely causes a measurable 
decline in academic test scores, whether through acute cogni-
tive impairment or other chronic physiological harms. Even 
though continued pollution exposure across grade years may 
lead to compounding learning loss, prior studies also show that 
ceasing pollution exposure subsequently improves test scores, 
and some straightforward interventions to mitigate pollution 
exposure may produce cost-effective academic benefits. 
Consider Gilraine’s32 finding that air purifiers installed in 
classrooms subsequently improved average student test scores 
by 0.2 standard deviations. While this result may appear some-
what higher than in similar studies in Appendix Table A2, it is 
not unreasonable given our regression findings. According to 
Gilraine32, local PM 2.5 levels in the area surrounding schools 
receiving indoor air quality treatment averaged 7.33 µg/m3 
during the treatment period, and the treatment likely reduced 
indoor particulate concentrations by 90% (per prior engineer-
ing estimates). For comparison to our measure of cumulative 
effects, we also assume equivalence between pre-treatment 
indoor and outdoor PM 2.5 levels and that students experi-
enced treatment during 18% of the treatment period (6 hours 
per day, 5 days per week). If applying our linear regression coef-
ficient, we would expect an overall test score improvement of 
0.16 standard deviations following Gilraine’s32 study of class-
room air treatment.xxii Thus, the finding in Gilraine32 is high 
but, perhaps, still reasonable. Our findings support PM 2.5 air 
pollution mitigation and classroom air purification as a poten-
tially cost-effective education intervention.xxiii Still, we also 
note a high degree of uncertainty regarding these input 
assumptions since 1) indoor air quality may be worse than 
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outdoor air quality,45 2) time spent in the classroom should 
perhaps be given more weight due to cognitive impairment 
while testing or learning, and 3) commercially available air 
purifiers may mitigate more pollutants than just PM 2.5 
(though, conversely, they may also remove less than the assumed 
90% of indoor particulates, as estimates vary.46

Quintile regression f indings

Our quintile regression trials provide practical insights. They 
reveal that the marginal impact of PM 2.5 exposure on math, 
ELA, and overall test scores decreases at higher levels of 
exposure.xxiv This means that the most polluted school districts 
need to see a steeper drop in outdoor ambient pollution to 
achieve the same education gains as a district that moves from 
medium to low air pollution levels. Notably, in February 2024 
the Federal EPA revised the Clean Air Act attainment threshold 
for ambient PM 2.5 concentration from 12 µg/m3 to 9 µg/m3.47 
While we have insufficient data to examine a specific subset of 
districts with average PM 2.5 levels that passed attainment 
thresholds during the study period, our quintile regression coef-
ficients suggest that California air districts achieving this revised 
standard would only see minor education benefits, as increasing 
marginal benefits from ambient PM 2.5 abatement occur at lev-
els below 9 µg/m3. These findings underscore the potential of 
indoor filtration as a practical near-term education intervention, 
as it can rapidly deliver a substantial drop in air pollution expo-
sure in the most polluted districts, particularly in the home or 
classroom setting. This has significant implications for policy-
makers and educators, highlighting the potential benefits of air 
pollution mitigation in educational settings.

Remaining questions and future research

Our findings align with a growing body of research highlighting 
the detrimental effects of particulate matter exposure on aca-
demic achievement. However, there is still much to learn. We 
propose further research to fully understand the mechanisms 
and subcomponents driving this effect, including the relative 
contributions of cognitive and respiratory harms and the causal 
pathways that may produce differing effects on math and ELA 
scores. Particulate matter is a broad term for various small parti-
cles that accumulate in ambient air and can cause health issues 
through inhalation, with finer particles able to penetrate deeper 
into the lungs.48 Nevertheless, the composition of particulate 
matter can vary depending on the source and location. As men-
tioned earlier, some previous studies suggest that the influence of 
PM 2.5 may vary geographically, which follows from the differ-
ent constituent compounds present in PM 2.5 from anthropo-
genic sources (eg, industrial exhaust) and natural sources (eg, 
wildfire smoke, dust, pollen, and sea spray).42,48,49 However, our 
research did not find differing per-unit effects of PM 2.5 
between urban and rural school districts.

Furthermore, different air pollutants are often intercorre-
lated. Thus, the specific effects of a component of air pollution 

are difficult to isolate. This is not just an academic concept but 
a crucial consideration from a policy perspective. This means 
mitigation measures or regulatory standards for pollution 
sources can simultaneously affect multiple air pollutants with-
out differentiation. This understanding is intriguing and vital 
for developing effective policies to combat air pollution.

Conclusion
California’s primary school students have likely experienced a 
demonstrable drop in standardized test score performance 
from exposure to fine particulate matter pollution in ambient 
air, and this learning loss likely compounds over time as air pol-
lution in California remains elevated. The effect sizes we find 
for PM 2.5 are substantial enough for policy consideration, 
mainly as some paths to pollution mitigation (such as installing 
air filters in classrooms) may produce test score gains that are 
more cost-effective than other commonly prescribed educa-
tional interventions. Our derivation of detected effects is only 
based on average exposure across the entire school district, 
which may mask particularly acute effects during peak expo-
sure timesxxv or when the concentration of air particulates 
occurs near a specific school site.

Finally, we argue that all studies examining the connection 
between pollution and academic achievement (including this 
one) could underestimate the actual aggregate effects by not 
accounting for the long-term impacts of pollution exposure on 
socioeconomic status. Existing research indicates that air pol-
lution exposure harms cognition and test performance and 
lowers expected lifetime incomes.50,51 Such lower income could 
result in a parent being unable to purchase or rent a home in 
the “quality” school districts with higher standardized test 
scores or directly improve their child’s educational outcomes 
through tutoring or other enrichment activities. Thus, pollu-
tion mitigation provides both an immediate, direct benefit for 
current students and an indirect benefit for students in subse-
quent generations. As such a profound correlation exists 
between race, income, pollution burden, public health, and aca-
demic achievement, the benefits of a policy intervention to 
mitigate primary student exposure to air particulates would 
likely work toward closing inequitable gaps in public health 
and educational outcomes.
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NOtes
i. The known determinants of educational outcomes, besides 

ambient air quality, serve as critical control variables for our 
subsequent exploration of cumulative air pollution impacts.

ii. Examples include 1) direct ground-level pollution monitor data 
when available, 2) algorithmic prediction from satellite data 
when direct measurements are not available (e.g., Zhang et al34), 
or 3) instrumental variables that are known to correlate with 
local air pollution levels, such as wind patterns,52 power plant 
operation,33 or proximate road-density.24

iii. Exceptions include Roth,35 which employed direct readings of 
indoor air pollution levels during university exams.

iv. Zhang et  al.34 notably distinguish between acute and chronic 
air pollution exposure, showing that a one-standard-deviation 
increase in an average Air Pollution Index (API) over the 3 years 
before cognitive tests produces around four times the effect of a 
similar increase over the week before testing.

v. While state-specific proficiency testing is generally conducted 
annually in math and ELA for each grade 3 to 8, NAEP testing 
is only conducted for fourth and eighth graders every 2 years. 

vi. SEDA dropped California math scores for seventh and eighth 
graders from 2009 to 2014 since those student assessments were 
end-of-course rather than end-of-grade.

vii. CES version 1.0 assigned scores to zip codes rather than Census 
tracts and thus is not directly comparable with subsequent ver-
sions for our analysis.

viii. The median Census tract size in our dataset is 2.50 km2. 
OEHHA39 contains a specific formula for combining air pol-
lution monitor and satellite data for California census tracts. 
OEHHA53 provides a map of the resulting Census tract PM 
2.5 estimates and locations of monitors throughout the State.

ix. Our dataset includes a median of one school per Census tract 
and six schools per district.

x. Some studies have also included climate variables such as wind 
patterns52 or ambient temperature,35 where methodologically 
applicable. As used in these studies, it is an instrumental variable 
to strengthen causal identification. Ambient temperature may 
also be a relevant control variable. However, both climate vari-
ables are outside the scope of our analysis, given that our PM 2.5 
estimate captures average ambient levels across an entire school 
district over the 6 years prior to testing. Further, the district 
fixed-effects we include likely capture any differences in aver-
age ambient temperature between districts over the study period, 
and the year fixed-effects control for any significant changes in 
average 6-year temperature within districts, to the extent that 
annual temperature changes across the state are correlated.

xi. As shown in Table 4, the exact numbers are between 561 and 
579 depending on the subject (math, ELA, or overall) and the 
error clustering level.

xii. The STATA fixed-effects panel data command of xtreg inter-
nally includes these school-district-specific controls.

xiii. The SEDA dataset includes a geographic classification for all 
California school districts by 55 counties, 37 metropolitan areas, 
and 16 commute zones.

xiv. The quintile regression uses dummy variables representing 
each 20% portion of the PM 2.5 concentration distribution as 
explanatory variables, with the first quintile (ie, the lowest PM 
2.5 exposure) as the omitted category.

xv. Donkelaar et al54 also examine the evolving chemical composi-
tion of PM 2.5 in North America from 2000 to 2016, amidst an 
overall decline in average concentrations across the continent.

xvi. Families at different income or education levels may also sort 
away (or toward) areas with elevated pollution levels due to 
housing prices or economic opportunities. We do not have data 
on student tenure in a district or any other indicators of how 
in-state migration patterns may correlate with ambient PM 2.5 
concentrations. However, since PM 2.5 levels are known to cor-
relate strongly with income, we included several different socio-
economic control variables to increase the reader’s confidence 
that our results are robust to these potentially confounding fac-
tors both between districts and within districts over the study 
period.

xvii. Possible examples of localized idiosyncratic factors that could 
influence academic performance and PM 2.5 levels—that 
socioeconomic control variables or district fixed effects may not 
fully capture—could include destructive wildfires, local govern-
ment initiatives, or changes in local industrial activity. While 
wildfires that produce detectable changes in ambient PM 2.5 
occur in California every year, there are limited instances of 
destructive wildfires that produced significant local economic 
harm or distruption of day-to-day living during our timeframe 
of analysis (note that the Camp Fire in Butte County occurred 
in November 2018, while California standardized testing 
occurred in the Spring). We are unaware of specific local fac-
tors beyond our control variables that may correlate with PM 
2.5 exposure during the study period. Still, our paper reflects an 
assumption that PM 2.5 variation within districts is exogenous 
to factors (other than the control variables) that affect student 
test performance, which may not be true in all instances.

xviii. To facilitate taking the natural log while preserving the distance 
between data points, we used the SEDA CS values with a con-
stant addition so that all values are positive.

xix. We also tried interacting the PM 2.5 explanatory variable 
included in the regression with four different dummy variables 
measuring whether the average district air pollution level is in 
the second, third, fourth, or fifth quintile of observed exposure. 
This would allow for the measured marginal influence of PM 
2.5 on grade-level equivalence to vary by the magnitude of 
the exposure, like Pham and Roach.44 We do not report these 
results due to their statistical insignificance.

xx. Mohai et al. (2011) test only 1 year of data and did not include 
school or district-fixed effects. Pham and Roach44 conduct a quin-
tile regression trial with multiple years of data and fixed effects.

xxi. The quintile regression contains the same suite of control vari-
ables as the linear regression trials.

xxii. Per these assumptions, students included in Gilraine32 experienced 
0.73 µg/m3 of PM 2.5 exposure at school and 7.33 µg/m3 away 
from school. This equates to an average reduction of 6.6 µg/m3 
during the 18% of the week spent in the classroom (or an average 
weekly reduction of 1.2 µg/m3). Per our preferred linear regression 
specification coefficient for overall test scores in Table 4, we expect 
a corresponding improvement of 0.16 standard deviations from 

https://orcid.org/0000-0001-5237-6534
https://orcid.org/0000-0001-5237-6534
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this level of PM 2.5 mitigation. Suppose we instead apply the quin-
tile regression results (Table 5). In that case, we find a somewhat 
smaller overall test score improvement of 0.12 standard deviations, 
as the schools included in Gilraine32 would move from the second 
quintile of PM 2.5 exposure pre-treatment to the lowest quintile 
post-treatment.

xxiii. Stafford’s55 finding that school retrofits to improve ventilation 
increased test scores by 0.07 to 0.11 standard deviations and that 
this educational benefit is more cost-effective than other com-
mon interventions, such as class-size reductions, is also relevant.

xxiv. Similarly, in a meta-analysis of 652 global cities, Liu et al56 find 
that the general association between PM 2.5 concentration and 
mortality is more potent at lower concentrations and levels off 
as concentrations increase.

xxv. Mullen et al. (2020) measure the impact on test scores from the 
peak PM 2.5 days experienced throughout the school year.
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Appendix

Table A1. Sample of literature regarding potential effects of particulate matter exposure on human health and cognition.

POllUTIOn TYPE AUTHORS FInDInGS AnD METHODOlOGY

Particulate Matter 
(effect on health)

beeson et al5 Elevated ambient PM 10 levels associated with increased lung cancer rates in 
California; cohort study of California adults

Anenberg et al6 5 to 10 million global emergency room visits for asthma in 2015 were attributable 
to PM 2.5 emissions, 73% of which were from anthropogenic sources; log-linear 
regression using epidemiological health impact functions

Wang et al11 Mortality from long-term PM 2.5 exposure in California was between 12,700 and 
26,700 in 2012, of which 53% is attributable to in-state anthropogenic emissions; 
PM 2.5 atmospheric modeling with concentration-response functions

Particulate Matter 
(effect on cognition)

Austin et al29 School bus retrofits that mitigate student exposure to diesel exhaust 
subsequently improved academic test scores; a full fleet retrofit would raise ElA 
scores by 0.09 standard deviations, and the monetized benefits from these 
academic gains exceed the associated costs

Künn et al13 Chess players made more errors with elevated indoor PM 2.5 levels, exacerbated 
by time limitations; Fixed effects linear regression

Archsmith et al14 baseball umpires made more incorrect calls with elevated ambient PM 2.5 levels; 
Fixed effects linear regression

Meyer and Pagel15 Stock traders were less productive at work on days with elevated ambient PM 2.5 
levels; Fixed effects linear regression

Heyes et al16 Canadian politicians made fewer complex speeches on days with elevated 
ambient PM 2.5 levels, and this effect was non-linear; Fixed effects kernel-
weighted regression with text analysis

 Heyes and Saberian24 Students in Iran attending schools in the top quartile of nearby road density 
performed 4.1% worse than students in the bottom quartile over the 5 y following 
2010 U.S. sanctions that degraded the quality of Iranian transportation fuels and 
worsened local air pollution

Table A2. Effect size comparison for studies that examine the impact of PM 2.5 exposure on test scores.

METHODS AUTHORS TIMEFRAME FInDInGS EFFECT SIzE nOTES AnD COMPARISOn

Quasi-experimental 
regression with 
coal use for power 
generation as an 
instrumental 
variable for air 
pollution exposure

Gilraine and 
zheng40

Academic year One µg/m³ increase in 
ambient PM 2.5 decreases 
subsequent average test 
scores by −0.02 standard 
deviations (SD)

The effect of PM 2.5 throughout the school 
year is 2 to 5× greater than the effect on test 
day alone.
For the same increase in PM 2.5, we find a 
larger decrease of −0.13 Sd in overall test 
scores.

Quasi-experimental 
regression with 
visibility as an 
instrumental 
variable for air 
pollution exposure

Amanzadeh 
et al23

Test day One standard deviation 
increase in PM 2.5 on test 
day is associated with a 
0.029 SD decrease in test 
scores

This estimate is consistent with the estimate in 
other studies that test-day exposure produces 
around 0.2 to 0.5× the effect of exposure 
throughout the year.
For the same increase in PM 2.5 (averaged 
over a much longer period), we find a larger 
decrease of −0.41 Sd in overall test scores.

 (Continued)

https://oehha.ca.gov/calenviroscreen/indicator/air-quality-pm25
https://oehha.ca.gov/calenviroscreen/indicator/air-quality-pm25
https://doi.org/10.3386/w20648
https://doi.org/10.3386/w20648
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559489/
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METHODS AUTHORS TIMEFRAME FInDInGS EFFECT SIzE nOTES AnD COMPARISOn

Quasi-experimental 
difference-in-
difference 
regression

Heissel et al31 Test day and full 
academic year

Attending school downwind 
of a major highway lowers 
average test scores by 0.04 
SD

The effect of PM 2.5 throughout the school 
year is 2 to 4× greater than the effect on test 
day alone.
The actual difference in PM 2.5 exposure 
concentrations between downwind and upwind 
schools is unknown, and thus comparison to 
other studies uncertain.

Fixed effects panel 
OlS regression

Marcotte49 Test day Moving from an average 
PM 2.5 Air Quality Index 
(AQI) score of 25 to an 
Unhealthy AQI of above 50 
on test day decreases ElA 
scores by 2%

we find that increasing a district’s average 
PM 2.5 concentration over the prior 6 y by 
1 µg/m³ decreases overall test scores by 
4.1%. This finding is not comparable to 
changes measured within a district 
experienced over a short time frame.

Fixed effects panel 
OlS regression

lavy et al57 Test day Increasing PM 2.5 by one 
standard deviation 
decreases scores on Israeli 
entrance exams by 0.028 
SD

This effect size closely matches Amanzadeh 
et al23 and supports estimates that test-day 
exposure produces around 0.2 to 0.5× the 
effect of exposure throughout the year.
For the same increase in PM 2.5, we find a 
larger decrease of −0.41 Sd in overall test 
scores.

Fixed effects panel 
OlS regression

Ham et al26 Observational, 
not time-
dependent

Increasing days of PM 2.5 
above regulatory standard 
by one standard deviation 
decreases reading scores 
by 0.006 SD

This measure for PM 2.5 (percent of days 
above the regulatory standard) does not 
necessarily approximate actual PM 2.5 
concentrations experienced throughout the 
year, and thus comparison to other studies is 
not possible.

Quasi-experimental 
regression with 
wind patterns as an 
instrumental 
variable for air 
pollution exposure

bedi et al52 Test day Performance on a fluid 
reasoning test is 17% lower 
on a poor air quality day 
(PM 2.5 > 35 µg/m³) than on 
an acceptable air quality 
day (PM 2.5 < 12 µg/m³). A 
10 -unit increase in PM 2.5 
AQI lowers test results by 
0.04 standard deviations.

This study produces an effect size 
approximately equivalent to other studies that 
measure the marginal impact of PM 2.5 
exposure on test day.

Fixed effects panel 
OlS regression

Ebenstein 
et al50

Test day and 8 
to 10 y later

Increasing PM 2.5 by one 
standard deviation 
decreases scores on Israeli 
entrance exams by 0.039 
SD, and PM 2.5 exposure 
during the exam is 
negatively associated with 
educational attainment and 
earnings 8 to 10 y later.

This study supports other estimates of the 
marginal impact of test-day PM 2.5 levels on 
test results and adds further credence to the 
human capital implications of PM 2.5 exposure 
through its effect on educational outcomes.

Generalized 
Estimating 
Equations model

Mullen et al58 School year Each additional day of peak 
PM 2.5 concentration 
decreased students’ 
proficiency rate in math by 
1.5%.

The effect of peak PM 2.5 exposure days is not 
directly comparable to our measure of 
cumulative effects incurred through chronic 
exposure to average PM 2.5 levels in the years 
prior to testing. This study also found a 
detrimental effect of average PM 2.5 levels 
over the school year, though this effect was 
weaker and not statistically significant.

Fixed effects panel 
OlS regression

Pham and 
Roach44

School year and 
pollution levels 
1 to 2 y prior

One µg/m³ increase in 
ambient PM 2.5 
concentration reduces test 
score achievement by 
0.0025 SD. A school district 
in the 90th percentile of PM 
2.5 concentration sees a 
reduction in achievement of 
0.075 SD. The effect is 
stronger for pollution levels 
1 to 2 y before testing.

The effect found for PM 2.5 on test scores is 
smaller than in other studies, but is 2 to 3× 
stronger for average PM 2.5 levels measured 1 
to 2 y prior to testing. This finding supports our 
identification of cumulative effects as stronger 
than contemporaneous ones.

Table A2. (Continued)
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Table A4. Regression results using sixth grade scores for 2015 to 2018 from CAASPP smarter balance assessments.

TEST TYPE OVERAll MATH ElA COMbInED MATH ElA

PM 2.5 
Regression 
Coefficient

−3.148** (1.380) −2.263## (1.545) −4.505*** (1.362) −1.394* (0.684) −0.607# (0.673) −2.426*** (0.765)

dependent 
Variable

Mean Scaled 
Score

Mean Scaled 
Score

Mean Scaled 
Score

Percent Standard 
Met and Above

Percent Standard 
Met and Above

Percent Standard 
Met and Above

observations 3631 1818 1813 3631 1818 1813

n districts 575 569 565 575 569 565

Robust standard errors are in parentheses with ***P < .01, **P < .05, *P < .1, ##P = .16, and #P = .38. Control variables and error clustering level (commute zone) align with 
the preferred regression specification. Omitted from this table are control variable regression coefficients.

Table A5. Descriptive statistics for alternate CAASPA test score measures (sixth grade scores for 2015-2018).

DEPEnDEnT 
VARIAblE AnD TEST 
TYPE

MEAn STD. DEV. MInIMUM MAxIMUM n ObSERVATIOnS

SEDA Cohort-Standardized (CS) Scale

Overall −0.149 0.495 −1.702 1.935 4428

Math −0.183 0.508 −1.702 1.935 2220

ElA −0.115 0.479 −1.470 1.412 2208

CAASPP Smarter Balanced Assessment Mean Scaled Score

Overall 2514.7 45.1 2384.5 2661.4 4081

Math 2510.9 48.2 2384.5 2661.4 2046

ElA 2518.6 41.6 2410 2635.7 2035

CAASPP Smarter Balanced Assessment Percent Standard Met and Above

Overall 41.5 19.6 0 94.1 4081

Math 36.3 19.2 0 91.5 2046

ElA 46.7 18.5 2 94.1 2035


