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We propose a sheaf-theoretic framework for the representation of a quantum observable
structure in terms of Boolean information sieves. The algebraic representation of a
quantum observable structure in the relational local terms of sheaf theory effectuates a
semantic transition from the axiomatic set-theoretic context of orthocomplemented
partially ordered sets, �a la Birkhoff and Von Neumann, to the categorical topos-theoretic
context of Boolean information sieves, �a la Grothendieck. The representation schema is
based on the existence of a categorical adjunction, which is used as a theoretical
platform for the development of a functorial formulation of information transfer,
between quantum observables and Boolean localisation devices in typical quantum
measurement situations. We also establish precise criteria of integrability and
invariance of quantum information transfer by cohomological means.
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1. Introduction

The main objective of a sheaf-theoretic representation schema regarding quantum

observable structures is the application of category-theoretic concepts and methods for the

evaluation and interpretation of the information content of these structures. For this

purpose, we introduce the central notion of Boolean information sieves leading to a novel

perspective regarding quantum information transfer into Boolean local contexts of

quantum measurement. The basic guiding idea is of a topological origin and concerns the

representation of the information enfolded in a global quantum observable structure, in

terms of localisation systems of interlocking Boolean contexts of observation, satisfying

certain well-defined compatibility relations. The implementation of this idea emphasises

the contextual character of quantum information retrieval in typical quantummeasurement

situations, via Boolean preparatory contexts, and furthermore, demonstrates that the

former is not ad hoc but can be cast in a mathematical form that respects strictly the rules

of topological transition from local to global. The language of category theory (MacLane

1971, Lawvere and Schanuel 1997) proves to be appropriate for the implementation of this

idea in a universal way. The conceptual essence of this scheme is the development of a

sheaf-theoretic topos perspective (Bell 1988, Mac Lane and Moerdijk 1992) on quantum

observable structures, which will constitute the basis for a functorial formulation of

information transfer between Boolean localisation devices and quantum systems.
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In quantum logical approaches, the notion of event, associated with the measurement

of an observable, is taken to be equivalent to a proposition describing the behaviour of a

physical system. This formulation of quantum theory is based on the identification of

propositions with projection operators on a complex Hilbert space. In this sense, the

Hilbert space formalism of quantum theory associates events with closed subspaces of a

separable, complex Hilbert space corresponding to a quantum system. Then, the quantum

events algebra is identified with the lattice of closed subspaces of the Hilbert space,

ordered by inclusion and carrying an orthocomplementation operation which is given by

the orthogonal complements of the closed subspaces (Birkhoff and von Neumann 1936,

Varadarajan 1968). Equivalently, it is isomorphic to the partial Boolean algebra of closed

subspaces of the Hilbert space of the system or, alternatively, the partial Boolean algebra

of projection operators of the system (Kochen and Specker 1967).

The starting point of our investigation is based on the observation that set-theoretic

axiomatisations of quantum observable structures hide the fundamental significance of

Boolean localisation systems in the formation of these structures. This is not satisfactory

due to the fact that all operational procedures employed in quantum measurement are

based in the preparation of appropriate Boolean environments. The construction of these

contexts of observation is related with certain abstractions and can be metaphorically

considered as Boolean pattern recognition systems. In the categorical language we adopt,

we can explicitly associate them with appropriate Boolean covering systems of a structure

of quantum observables. In this way, the real significance of a quantum structure proves to

be, not at the level of events, but at the level of gluing together overlapping Boolean

localisation contexts. The development of the conceptual and technical machinery of

localisation systems for generating non-trivial global event structures, as it has been

recently demonstrated in Zafiris (2006a), effectuates a transition in the semantics of events

and observables from a set-theoretic to a sheaf-theoretic one. This is a crucial semantic

difference that characterises the present approach in comparison to the vast literature on

quantum measurement and quantum logic.

The formulation of information transfer proposed in this paper is based on the sheaf-

theoretic representation of a quantum observable structure in terms of Boolean

information sieves, consisting of families of local Boolean reference frames, which can be

pasted together using category-theoretic means. Contextual topos-theoretic approaches to

quantum structures have been independently proposed from the viewpoint of the theory of

presheaves on partially ordered sets in Butterfield and Isham (1998, 1999), and have been

extensively discussed and critically analysed in Butterfield and Isham (2000) and Rawling

and Selesnick (2000). An interesting intuitionistic interpretation of quantum mechanics

has been constructed in Adelman and Corbett (1995) by using the real number continuum

given by the sheaf of Dedekind reals in the topos of sheaves on the quantum state space.

The idea of introduction of Boolean reference frames has also appeared in the literature,

from a non-category theoretic perspective, in Davis (1977) and Takeuti (1978). For a

general mathematical discussion of sheaves, variable sets and related structures, the

interested reader should consult Lawvere (1975). Finally, it is also worth mentioning that

an alternative sheaf-theoretic approach to quantum structures has been recently initiated

independently in de Groote (2001). In a general setting, this approach proposes a theory of

presheaves on the quantum lattice of closed subspaces of a complex Hilbert space, by

transposing literally and generalising the corresponding constructions from the lattice of

open sets of a topological space to the quantum lattice. In comparison, our approach

emphasises the crucial role of Boolean localisation systems in the global formation of

quantum structures and, thus, shifts the focus of relevant constructions to sheaves over
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suitable localisation systems on a base category of Boolean subalgebras of global quantum

algebras. Technical expositions of sheaf theory, being of particular interest, in relation to

the focus of the present work are provided by Mac Lane and Moerdijk (1992), Bredon

(1997) and Mallios (1998, 2004). We mention that another local-to-global perspective on

quantum information has been developed in the context of the System of Systems

approach (Jamshidi 2009), in which post-measurement, the linear probabilistic quantum

model may be viewed as giving rise to a system of systems each characterised by a linear

probabilistic quantum system model. Graph models for dealing with quantum complexity

have been developed in Kitto (2008) and Sahni et al. (2009). Finally, various applications

of sheaf-theoretic structures, based on the development of suitable localisation schemes

referring to the modelling and interpretation of quantum systems, have been

communicated, both conceptually and technically, by the author in the literature (Zafiris

2000, 2006a, 2006b, 2006c, 2006d, 2009).

In Section 2, we define event and observable structures using category-theoretic means.

In Section 3, we introduce the notion of a Boolean functor, we define the category of

presheaves of Boolean observables and also develop the idea of fibred structures. In Section

4, we prove the existence of an adjunction between the topos of presheaves of Boolean

observables and the category of quantum observables and formulate a schema of functorial

information transfer. In Section 5, we define Boolean information sieves as systems of

Boolean localisations for quantum observable structures and analyse their operational role.

In Section 6, we formulate an invariance property of functorial information transfer using

the adjunction established previously. In Section 7, we establish precise functorial criteria

of integrability and invariance of information transfer between quantum observable

structures and Boolean localisation systems. Finally, we conclude in Section 8.

2. Categories of events and observables

A quantum event structure is a category, denoted by L, which is called the category of

quantum event algebras.

Its objects, denoted by L, are quantum algebras of events, that is orthomodular s-

orthoposets. More concretely, each object L in L is considered as a partially ordered set of

quantum events, endowed with a maximal element 1 and with an operation of

orthocomplementation ½2�* : L! L, which satisfy, for all l [ L, the following conditions:

[a] l # 1, [b] l** ¼ l, [c] l _ l* ¼ 1, [d] l # �l ) �l* # l*, [e] l ’ �l ) l _ �l [ L, [f] for

l; �l [ L; l # �l implies that l and �l are compatible, where 0 U 1*, l ’ �l U l # �l*, and the

operations of meet ^ and join _ are defined as usual. We also recall that l; �l [ L are

compatible if the sublattice generated by {l; l *; �l; �l*} is a Boolean algebra, namely if it is a

Boolean sublattice. The s-completeness condition, namely that the join of countable

families of pair-wise orthogonal events must exist, is also required in order to have a well-

defined theory of observables over L.

Its arrows are quantum algebraic homomorphisms, that is maps K!
H
L, which satisfy

for all k [ K, the following conditions: [a] Hð1Þ ¼ 1, [b] Hðk *Þ ¼ ½HðkÞ�*, [c]

k # �k ) HðkÞ # Hð�kÞ, [d] k ’ �k ) Hðk _ �kÞ # HðkÞ _ Hð�kÞ, [e] Hð_nknÞ ¼ _nHðknÞ,

where k1; k2; . . . are a countable family of mutually orthogonal events.

A classical event structure is a category, denoted by B, which is called the category of
Boolean event algebras. Its objects are s-Boolean algebras of events and its arrows are the

corresponding Boolean algebraic homomorphisms.

The notion of observables corresponds to a physical quantity that can be measured in

the context of an experimental arrangement. In any measurement situation the propositions
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that can be made concerning a physical quantity are of the following type: the value of the

physical quantity lies in some Borel set of the real numbers. A proposition of this form

corresponds to an event as it is apprehended by an observer using his measuring

instrument. An observable J is defined to be an algebraic homomorphism from the Borel

algebra of the real line BorðRÞ to the quantum event algebra L,

J : BorðRÞ! L; ð2:1Þ

such that [i] JðYÞ ¼ 0; JðRÞ ¼ 1; [ii] E> F ¼ Y ) JðEÞ ’ JðFÞ, for E;F [ BorðRÞ;

[iii]Jð<nEnÞ ¼ _nJðEnÞ, where E1;E2; . . . are a sequence of mutually disjoint Borel sets

of the real line.

If L is isomorphic with the orthocomplemented lattice of orthogonal projections on a

Hilbert space, then it follows from von Neumann’s spectral theorem (Varadarajan 1968)

that the observables are in injective correspondence with the hypermaximal Hermitian

operators on the Hilbert space.

A quantum observable structure is a category, denoted by OQ, which is called the

category of quantum observables. Its objects are quantum observables J : BorðRÞ! L

and its arrows J!Q are commutative triangles or, equivalently, the quantum algebraic

homomorphisms L!
H
K inL, preserving by definition the join of countable families of pair-

wise orthogonal events, such that Q ¼ H+J in Diagram 1 is again a quantum observable.

Correspondingly, a Boolean observable structure is a category, denoted by OB,

which is called the category of Boolean observables. Its objects are the Boolean

observables j : BorðRÞ! B and its arrows are the Boolean algebraic homomorphisms

B!
h
C in B, such that u ¼ h+j in Diagram 2 is again a Boolean observable.

3. Functors associated with observables

3.1 Functor category of Boolean observable presheaves

If Oop
B is the opposite category of OB, then SetsO

op

B denote the functor category of

presheaves on Boolean observables. Its objects are all functors X : Oop
B ! Sets, and its

morphisms are all natural transformations between such functors. Each object X in this

category is a contravariant set-valued functor on OB, called a presheaf on OB.

For each Boolean observable j of OB, XðjÞ is a set, and for each arrow f : u! j,

Xðf Þ : XðjÞ! XðuÞ is a set function. If X is a presheaf on OB and x [ XðOÞ, the value

Xðf ÞðxÞ for an arrow f : u! j in OB is called the restriction of x along f and is denoted by

Xðf ÞðxÞ ¼ x·f .

Each object j of OB gives rise to a contravariant Hom functor y½j� U HomOB
ð2; jÞ.

This functor defines a presheaf on OB. Its action on an object u of OB is given by

y½j�ðuÞ U HomOB
ðu; jÞ; ð3:1Þ

Diagram 1.
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whereas its action on a morphism h!
w
u for v : u! j is given by

y½j�ðwÞ : HomOB
ðu; jÞ! HomOB

ðh; jÞ; ð3:2Þ

y½j�ðwÞðvÞ ¼ v +w: ð3:3Þ

Furthermore, y can be made into a functor fromOB to the contravariant functors onOB

y : OB ! SetsO
op
B ; ð3:4Þ

such that j 7! HomOB
ð2; jÞ. This is an embedding, called the Yoneda embedding

(MacLane and Moerdijk 1992), and it is a full and faithful functor.

The functor category of presheaves on Boolean observables SetsO
op
B provides an

exemplary case of a category known as topos (Lawvere 1975, Bell 1988, MacLane and

Moerdijk 1992). A topos can be conceived as a well-defined notion of a universe of

variable sets. Furthermore, it provides a natural example of a many-valued truth structure,

which remarkably is not ad hoc, but reflects genuine constraints of the surrounding

universe.

3.2 Fibrations over Boolean observables

SinceOB is a small category, there is a set consisting of all the elements of all the setsXðjÞ,

and similarly there is a set consisting of all the functions Xðf Þ. This observation regarding
X : Oop

OB
! Sets permits us to take the disjoint union of all the sets of the form XðjÞ for all

objects j ofOB. The elements of this disjoint union can be represented as pairs ðj;XÞ for all
objects j ofOB and elements x [ XðjÞ. Thus the disjoint union of sets is made by labelling

the elements. Now we can construct a category whose set of objects is the disjoint union

just mentioned. This structure is called the category of elements of the presheaf X, denoted

by
Ð
ðX;OBÞ. Its objects are all pairs ðj; xÞ, and its morphisms ð �j; �xÞ! ðj; xÞ are those

morphisms u : �j! j of OB for which x·u ¼ �x. Projection on the second coordinate ofÐ
ðX;OBÞ defines a functor

Ð
X
:
Ð
ðX;OBÞ!OB.

Ð
ðX;OBÞ together with the projection

functor
Ð
X
is called the split discrete fibration induced by X, andOB is the base category of

the fibration (Diagram 3). We note that the fibration is discrete because the fibres are

Diagram 2.

Diagram 3.
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categories in which the only arrows are identity arrows. If j is a Boolean observable object

of OB, the inverse image under
Ð
X
of j is simply the set XðjÞ, although its elements are

written as pairs so as to form a disjoint union. The notion of discrete fibration induced byX
is an application of the general Grothendieck construction in our context of enquiry.

It is instructive to remark that the construction of the split discrete fibration induced by

X, where OB is the base category of the fibration, incorporates the physically important

requirement of uniformity (Zafiris 2006a, 2006b, 2006c, 2006d). The notion of uniformity

requires that for any two events observed over the same domain of measurement, the

structure of all Boolean contexts that relate to the first cannot be distinguished in any

possible way from the structure of Boolean contexts relating to the second. In this sense,

all the observed events within any particular Boolean context should be uniformly

equivalent to each other. It is easy to notice that the composition law in the category of

elements of the presheaf X expresses precisely the above uniformity condition.

3.3 Functor of Boolean coefficients

We define a Boolean coefficient or Boolean coordinatisation functor

M : OB !OQ; ð3:5Þ

which assigns to Boolean observables in OB (which plays the role of the category of

coordinatisation models) the underlying quantum observables from OQ, and to Boolean

homomorphisms the underlying quantum algebraic homomorphisms.

Equivalently, the functor of Boolean coefficients can be characterised as M : B! L,
which assigns to Boolean event algebras in B the underlying quantum event algebras from

L, and to Boolean homomorphisms the underlying quantum algebraic homomorphisms,

such that Diagram 4 commutes.

4. Functorial information transfer

4.1 Adjunctive correspondence between presheaves of Boolean observables and
quantum observables

We consider the category of quantum observables OQ and the modelling functor M,

and we define the functor R from OQ to the topos of presheaves of Boolean observables

given by

RðJÞ : j 7! HomOQ
ðMðjÞ;JÞ: ð4:1Þ

A natural transformation t between the topos of presheaves on the category of Boolean

observables X and RðJÞ, t : X! RðJÞ is a family tj indexed by Boolean observables j of

Diagram 4.
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OB for which each tj is a map

tj : XðjÞ! HomOQ
ðMðjÞ;JÞ ð4:2Þ

of sets, such that Diagram 5 commutes for each Boolean homomorphism u : �j! j of OB.

If we make use of the category of elements of the Boolean observable variable set X,

then the map tj, defined above, can be characterised as

tj : ðj; pÞ! HomOQ
ðM+

ð
X

ðj; pÞ;JÞ: ð4:3Þ

Equivalently, such a t can be seen as a family of arrows of OQ which is being indexed by

objects ðj; pÞ of the category of elements of the presheaf of Boolean observablesX, namely

{tjðpÞ : MðjÞ!J}ðj;pÞ: ð4:4Þ

From the perspective of the category of elements of X, the condition of the commutativity

of the preceding diagram is equivalent with the condition that for each Boolean

homomorphism u : �j! j of OB, Diagram 6 is commutative.

It is straightforward to see that the arrows tjðpÞ form a cocone from the functor M+
Ð
X

to the quantum observable J. If we remind the categorical notion of colimit, being the

universal construction of interconnection, we conclude that each such cocone emerges by

the composition of the colimiting cocone with a unique arrow from the colimit LX to the

quantum observable J. In other words, there is a bijection which is natural in X and J

NatðX;RðJÞÞ ø HomOQ
ðLX;JÞ: ð4:5Þ

From the above bijection, we are driven to the conclusion that the functor R from OQ

to the topos of presheaves given by

RðJÞ : j 7! HomOQ
ðMðjÞ;JÞ ð4:6Þ

has a left adjoint L : SetsO
op

B !OQ, which is defined for each presheaf of Boolean

observables X in SetsO
op
B as the colimit

LðXÞ ¼ Colim

ð
ðX;OBÞ!

Ð
XOB!

MOQ

( )
: ð4:7Þ

For readers not feeling comfortable with the categorical notion of colimit, we may

construct it explicitly for the case of interest X ¼ RðJÞ in set-theoretical language as

follows:

Diagram 5.
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4.1.1 Colimit construction

We consider the set

LðRðJÞÞ ¼ {ðcj; qÞ=ðcj : MðjÞ!JÞ [

ð
ðRðJÞ;OBÞ

� �
0

; q [ MðjÞ}: ð4:8Þ

We notice that if there exists u : c �j
! cj such that uð �qÞ ¼ q and cj + u ¼ c �j

, where

½RðJÞu�ðcjÞ U cj + u as usual, then we may define a transitive and reflexive relation R on

the set LðRðJÞÞ. Of course the inverse also holds true. We notice then that

ðcj + u; qÞRðcj; uð�qÞÞ; ð4:9Þ

for any u : Mð �jÞ!MðjÞ in the category OB. The next step is to make this relation also

symmetric by postulating that for w, x in LðRðJÞÞ, where w, x denote pairs in the above

set, we have

w , x; ð4:10Þ

if and only if wRx or xRw. Finally, by considering a sequence @1;@2; . . . ;@k, of elements

of the set LðRðJÞÞ and also w, x such that

w , @1 , @2 , · · · , @k21 , @k , x; ð4:11Þ

we may define an equivalence relation on the set LðRðLÞÞ as follows:

w n x U w , @1 , @2 , · · · , @k21 , @k , x: ð4:12Þ

Then for each w [ LðRðJÞÞ, we define the quantum at w as follows:

Qw ¼ {i [ LðRðJÞÞ : w n i}: ð4:13Þ

We finally put

LðRðJÞÞ=n U {Qw : w ¼ ðcj; qÞ [ LðRðJÞÞ}; ð4:14Þ

and use the notation Qw ¼ kðcj; qÞk. If we remind ourselves that each quantum observable

is defined as an algebraic homomorphism from the Borel algebra of the real line BorðRÞ to

a quantum event algebra L, we may finally write the quotient LðRðJÞÞ=n in the form of a

Diagram 6.
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quantum observable as follows:

LðRðJÞÞ=n : BorðRÞ! LðRðLÞÞ=n; ð4:15Þ

and verify that LðRðLÞÞ=n is actually a quantum event algebra, where in complete analogy

with the definition of LðRðJÞÞ=n we have

LðRðLÞÞ ¼ {ðcB; bÞ=ðcB : MðBÞ! LÞ; b [ MðBÞ}: ð4:16Þ

The set LðRðJÞÞ=n is naturally endowed with a quantum algebra structure if we are

careful to notice that

[1] The orthocomplementation is defined as Q*
z ¼ kðcB; bÞk

* ¼ kðcB; b*Þk.

[2] The unit element is defined as 1 ¼ kðcB; 1Þk.
[3] The partial order structure on the set LðRðLÞÞ=n is defined as

kðcB; bÞk W kðcC; rÞk if and only if d1 W d2 where we have made the following

identifications: kðcB; bÞk ¼ kðcD; d1Þk and kðcC; rÞk ¼ kðcD; d2Þk, with d1, d2 [ MðDÞ

according to the fibred product Diagram 7 of event algebras, such that bðd1Þ ¼ b,

gðd2Þ ¼ r. The rest of the requirements such that LðRðLÞÞ=n actually carries the structure

of a quantum event algebra are obvious.

The conclusion being drawn from the analysis presented in this section can be

summarised as follows: there exists a pair of adjoint functors L s R according to the

bidirectional correspondence;

L : SetsO
op
B !

ˆOQ : R: ð4:17Þ

This pair of functors forms a categorical adjunction consisting of the functors L and R,

called left and right adjoints with respect to each other, respectively, as well as the natural

bijection:

NatðX;RðJÞÞ ø HomOQ
ðLX;JÞ: ð4:18Þ

The existence of the categorical adjunctive correspondence explained above provides a

theoretical platform for the formulation of a functorial schema of interpretation,

concerning the information transfer that takes place in quantum measurement situations. If

we consider that SetsB
op

is the universe of Boolean observable event structures modelled in

Sets, and L is that of quantum event structures, then the topos theoretical specification of

the first category represents the varying world of Boolean localisation filters of

information associated with abstraction mechanisms of observation. In this perspective,

the functor SetsB
op

! L can be comprehended as a translational code from Boolean

information filters to the quantum species of structure, whereas the functor R :

Diagram 7.
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L! SetsBop can be comprehended as a translational code in the inverse direction. In

general, the content of the information is not possible to remain completely invariant

translating from one language to another and back, in any information transfer mechanism.

However, there remain two ways for a Boolean event algebra variable set P, or else a

Boolean filter of information, to communicate a message to a quantum event algebra L.

Either the information is transferred in quantum terms with P translating, which can be

represented as the quantum homomorphism LP! L, or the information is transferred in

Boolean terms with L translating, which, in turn, can be represented as the natural

transformation P! RðLÞ. In the first case, from the perspective of L, information is being

received in quantum terms, while in the second, from the perspective of P, information is

being sent in Boolean terms. The natural bijection then corresponds to the assertion that

these two distinct ways of communicating are equivalent. Thus, the physical meaning of

the adjunctive correspondence signifies a co-dependency of the involved languages in

communication. This is realised operationally in the process of extraction of the

information content enfolded in a quantum observable structure through the pattern

recognition characteristics of specified Boolean domain preparatory contexts. In turn, this

process gives rise to a variation of the information collected in Boolean filtering systems

for an observed quantum system, which is not always compatible. In the next section, we

will specify the necessary and sufficient conditions for a full and faithful representation of

the informational content included in a quantum observable structure in terms of Boolean

information sieves or, equivalently, Boolean localisation systems. At the present stage, we

may observe that the representation of a quantum observable as a categorical colimit,

resulting from the same adjunctive correspondence, reveals a theoretical concept that can

admit a multitude of Boolean coordinatisations, specified mathematically by different

Boolean coefficients in Boolean information filtering systems (Figure 8).

5. Boolean information sieves

5.1 Functor of Boolean points of quantum observables

The development of the ideas contained in the proposed scheme is based on the notion of

the functor of Boolean points of quantum observables, so it is worthwhile to explain its

meaning in some detail. The conceptual background behind this notion has its roots in the

work of Grothendieck in algebraic geometry (MacLane and Moerdijk 1992). If we

consider the opposite of the category of quantum observables, that is the category with the

same objects but with arrows reversed Oop
Q , each object in the context of this category can

be thought of as the locus of a quantum observable, or else it carries the connotation of

space. The crucial observation is that any such space is determined up to canonical

isomorphism if we know all morphisms in this locus from any other locus in the category.

For instance, the set of morphisms from the one-point locus toJ inOop
Q determines the set

of points of the locus J. The philosophy behind this approach amounts to considering any

morphism in Oop
Q targeting the locus J as a generalised point of J. It is obvious that the

Diagram 8.
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description of a locusJ in terms of all possible morphisms from all other objects ofOop
Q is

redundant. For this reason, we may restrict the generalised points of J to all those

morphisms in Oop
Q having as domains measurement loci corresponding to Boolean

observables. Evidently, such measurement loci correspond, if we take into account Stone’s

representation theorem for Boolean algebras, to a replacement of each Boolean algebra B

in B by its set-theoretical representation ½S;BS�, consisting of a local measurement space

S and its local field of subsets BS.

Variation of generalised points over all domain objects of the subcategory of Oop
Q

consisting of Boolean observables produces the functor of points of J restricted to the

subcategory of Boolean objects, identified withOop
Q . This functor of Boolean points ofJ is

made then an object in the category of presheaves SetsOBop, representing a quantum

observable – in the sequel for simplicity we talk of an observable and its associated locus

tautologically – in the environment of the topos of presheaves over the category of

Boolean observables. This methodology will prove to be successful if it could be possible

to establish an isomorphic representation ofJ in terms of the information being carried by

its Boolean points j!J collated together by appropriate means.

5.2 Boolean information sieves of prelocalisation

We coordinatise the information contained in a quantum observable J in OQ by means of

Boolean points, namely morphisms j!J having as their domains, locally defined

Boolean observables j in OB. Any single map from a Boolean coordinate domain to a

quantum observable is not enough for a complete determination of its information content,

and hence, it contains only a limited amount of information about it. More concretely, it

includes only the amount of information related to a prepared Boolean local context, and

thus, it is inevitably constrained to represent the abstractions associated with its

preparation. In order to cope with this problem, we consider a sufficient number of

localising morphisms from the domains of Boolean preparatory contexts simultaneously,

such that the information content of a quantum observable can be eventually covered

completely. In turn, the information available about each morphism of the specified

covering may be used to determine the quantum observable itself. In this case, we say that

the family of such morphisms generates a Boolean information sieve of prelocalisations

for a quantum observable, induced by measurement. We may formalise these intuitive

ideas as follows:

A Boolean information sieve of prelocalisations for a quantum observable J in OQ

is a subfunctor of the Hom functorRðJÞ of the form S : Oop
B ! Sets, namely for all j inOB

it satisfies SðjÞ # ½RðJÞ�ðjÞ. According to this definition, a Boolean information sieve of

prelocalisations for a quantum observable J in OQ can be understood as a right ideal SðjÞ

of quantum algebraic homomorphisms of the form

cj : MðjÞ!J; j [ OB; ð5:1Þ

such that kcj : MðjÞ!J in SðjÞ, and MðvÞ : Mð �jÞ!MðjÞ in OQ for v : �j! j in OB,

implies cj +MðvÞ : Mð �jÞ!OQ in SðjÞl.
We observe that the operational role of a Boolean information sieve, namely of a

subfunctor of the Hom-functor RðJÞ, is tantamount to the depiction of an ideal of

localising morphisms acting as local coverings of a quantum observable by coordinatising

Boolean information points. We may characterise the morphisms cj : MðjÞ!J; j [
OB in a sieve of prelocalisations, as Boolean covers for the filtration of information
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associated with a quantum observable structure. Their domains BJ provide Boolean

coefficients, associated with measurement situations according to Diagram 9.

The introduction of these systems is justified by the consequences of the Kochen–

Specker theorem, according to which, it is not possible to understand completely a

quantum mechanical system with the use of a single Boolean experimental arrangement.

Equivalently, there are no two-valued homomorphisms on the algebra of quantum events,

and thus, it cannot be embedded into a Boolean one. On the other hand, in every concrete

experimental context, the set of events that have been actualised in this context forms a

Boolean algebra. Consequently, any Boolean domain object ðBJ; ½cB�J : MðBJÞ! LÞ in a

sieve of prelocalisations for a quantum event algebra, such that the diagram above

commutes, corresponds to a set of Boolean events that become actualised in the

experimental context of B. These Boolean objects play the role of Boolean information

localising devices in a quantum event structure, which are induced by local preparatory

contexts of quantum measurement situations. The above observation is equivalent to the

statement that a measurement-induced Boolean algebra serves as a reference frame,

relative to which a measurement result is being coordinatised, in accordance to the

informational specification of the corresponding localisation context.

A family of Boolean covers cj : MðjÞ!J; j [ OB is the generator of a Boolean

information sieve of prelocalisation S, if and only if this sieve is the smallest among all

that contains that family. It is evident that a quantum observable, and correspondingly the

quantum event algebra over which it is defined, may be covered by a multitude of Boolean

information sieves of prelocalisations, which, significantly, form an ordered structure.

More specifically, sieves of prelocalisation constitute a partially ordered set under

inclusion. The minimal sieve is the empty one, namely SðjÞ ¼ Y for all j [ OB, whereas

the maximal sieve is the Hom functor RðJÞ itself or, equivalently, the set of all quantum

algebraic homomorphisms cj : MðjÞ!J.

5.3 Boolean information sieves of localisation

The transition from a sieve of prelocalisations to a Boolean information sieve of

localisations for a quantum observable is necessary for the compatibility of the

information content gathered in different Boolean filtering mechanisms. A Boolean

information sieve of localisations contains all the necessary and sufficient conditions for

the representation of the information content of a quantum observable structure as a sheaf

of Boolean coefficients associated with Boolean localisation contexts. The notion of sheaf

expresses exactly the pasting conditions that the local filtering devices have to satisfy, or

else, the specification by which local data, providing Boolean coefficients obtained in

measurement situations, can be collated.

In order to define a Boolean information sieve of localisations, it is necessary to

explain the notion of pullback in the category OQ.

Diagram 9.
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The pullback of the Boolean information filtering covers cj : MðjÞ!J, where j [
OB and c �j

: Mð �jÞ!J, where �j [ OB, with common codomain the quantum observable

J consists of the object MðjÞ £J Mð �jÞ and two arrows c
j �j
and c �jj

, called projections, as

shown in Diagram 10. The square commutes and for any object T and arrows h and g that

make the outer square commute, there is a unique u : T !MðjÞ £J Mð �jÞ that makes the

whole diagram commutative. Hence, we obtain the condition:

cj+g ¼ cj+h: ð5:2Þ

We emphasise that ifcj and c �j
are injective maps, then their pullback is isomorphic with

the intersectionMðjÞ>Mð �jÞ. Thenwe can define the pastingmap,which is an isomorphism,

as follows:

V
j; �j : c �jj

ðMðjÞ £J Mð �jÞÞ! c
j �j
ðMðjÞ £J Mð �jÞÞ; ð5:3Þ

by putting

V
j; �j ¼ c

j �j
+c21

�jj
: ð5:4Þ

Then we have the following cocycle conditions:

Vj;j ¼ 1j 1j U idj; ð5:5Þ

V
j; �j
+V �j;j

¼ Vjj��
if MðjÞ>Mð �jÞ>Mðj�

�
Þ – 0; ð5:6Þ

V
j; �j

¼ V21
�j;j

if MðjÞ>Mð �jÞ – 0: ð5:7Þ

The pasting map assures that c �jj
ðMðjÞ £J Mð �jÞÞ and c

j �j
ðMðjÞ £J Mð �jÞÞ cover the

same part of the informational content of a quantum observable in a compatible way.

Given a sieve of prelocalisations for quantum observable J [ OQ and, correspond-

ingly, for the quantum event algebra over which it is defined, it is called a Boolean
information sieve of localisations, if and only if the above compatibility conditions are

satisfied.

We assert that the above compatibility conditions provide the necessary relations for

understanding a Boolean information sieve of localisations for a quantum observable, as a

sheaf of Boolean coefficients representing the information encoded in local Boolean

observables. In essence, the pullback compatibility conditions express gluing relations on

overlaps of Boolean domain information covers. The concept of sheaf (MacLane and

Moerdijk 1992, Bredon 1997, Mallios 1998) expresses exactly the amalgamation

Diagram 10.
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conditions that local coordinatising Boolean points have to satisfy, namely the way by

which local data, providing Boolean coefficients obtained in measurement situations, can

be collated globally.

In this sense, the specification of a Boolean information sieve of localisation, as a sheaf

of Boolean coefficients associated with the variation of the information obtained in

multiple Boolean localisation contexts, permits the conception of a quantum observable

(or of its associated quantum event algebra) as a global manifestation of local Boolean

observable information collation, obtained by pasting the c �jj
ðMðjÞ £J Mð �jÞÞ and

c
j �j
ðMðjÞ £J Mð �jÞÞ, covers together by the transition functions V

j; �j.

6. Conditions for invariant functorial information transfer

The interpretational framework for the comprehension of functorial information transfer,

as established by the adjunctive correspondence between presheaves of Boolean

localisation coefficients, associated with information filtering contexts of observation, and

quantum observable structures can be completed by the formulation of a property

characterising the conditions for invariance of the information transferred in the totality of

Boolean localisation environments.

The existence of this invariance property is equivalent to the representation of

quantum observables and their associated quantum event algebras, in terms of Boolean

information sieves, capable of encoding the whole informational content included in a

quantum structure. The intended representation can be obtained from the established

adjunction itself as follows:

Every categorical adjunction is completely characterised by the unit and counit natural

transformations (MacLane and Moerdijk 1992). For the adjunctive correspondence

between presheaves of Boolean observables and quantum observables, the unit and counit

morphisms are defined as follows:

For any presheaf P [ SetsO
op

B , the unit is defined as

dP : P! RLP: ð6:1Þ

On the other hand, for each quantum observable J of OQ, the counit is

eJ : LRðJÞ!J: ð6:2Þ

The counit corresponds to the vertical morphism in Diagram 11.

Diagram 11 has been obtained by the categorical representation of the colimit in the

category of elements of the functor RðJÞ as a coequaliser of coproduct (MacLane and

Moerdijk 1992). More specifically, in the coequaliser representation of the colimit, the

second coproduct is over all the objects ðj; pÞ with p [ RðJÞðjÞ of the category of

elements, while the first coproduct is over all the maps v : ð �j; �pÞ! ðj; pÞ of that category,
so that v : �j! j, and the condition p·v ¼ �p is satisfied.

Diagram 11.
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In general, by means of that representation, we can show that the left adjoint functor of

the adjunction is like the tensor product2^OB
M. More specifically, using the coequaliser

representation of the colimit LX, we can easily show that the elements of X^OB
M,

considered as a set endowed with a quantum algebraic structure, are all of the form xðp; qÞ,
or in a suggestive notation

xðp; qÞ ¼ p^q; p [ XðjÞ; q [ MðjÞ; ð6:3Þ

satisfying the coequaliser condition pv^ �q ¼ p^v�q.

From Diagram 11, it is clear that the representation of a quantum observable J in OQ

and, thus, of a quantum event algebra L in L, in terms of a Boolean information sieve of

localisations, is full and faithful, if and only if the counit of the established adjunction,

restricted to this sieve, is an isomorphism, that is structure preserving, injective and

surjective.

The physical significance of this representation lies on the following proposition:

6.1 Quantum information preservation principle

The whole information content enfolded in a quantum observable structure is preserved by

some covering Boolean system, if and only if that system forms a Boolean information

sieve of localisations.

The preservation principle is established by the counit isomorphism. It is remarkable

that the categorical notion of adjunction provides the appropriate formal tool for the

formulation of invariant properties, giving rise to preservation principles of a physical

character.

Concerning the representation above, we realise that the surjective property of the

counit guarantees that the Boolean information filtering mechanisms, being themselves

objects in the category of elements,
Ð
ðRðLÞ;BÞ, cover entirely the quantum event algebra

L, whereas its injective property guarantees that any two information filters are compatible

in a sieve of localisations. Moreover, since the counit is also a homomorphism, the

algebraic structure is preserved.

We observe that each Boolean filtering device gives rise to a set of Boolean events

actualised locally in a measurement situation. The equivalence classes of Boolean events

represent quantum events in L, through compatible coordinatisations by Boolean

coefficients. Consequently, the structure of a quantum event algebra is being generated by

the information carried from its structure preserving morphisms, encoded as Boolean

information filters in localisation sieves, together with their compatibility relations.

We may clarify that the underlying invariance property specified by the adjunction is

associated with the informational content of all these, different or overlapping information

filtering mechanisms in various Boolean localisation contexts, and can be explicitly

formulated as follows:

6.2 Invariance property

The information content of a quantum observable structure remains invariant, with respect

to measurement contexts of Boolean coordinatisations, if and only if the counit of the

adjunction, restricted to covering systems, qualified as Boolean information sieves of

localisations, is an isomorphism.

In turn, the counit of the adjunction, restricted to a Boolean information sieve of

localisations, is an isomorphism, if and only if the right adjoint functor is full and faithful
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or, equivalently, if and only if the cocone from the functor M+
Ð
RðJÞ

to the quantum

observable J is universal for each object J in OQ (MacLane and Moerdijk 1992). In the

latter case, we characterise the functor M : OB !OQ, a proper functor of Boolean

coefficients.

From a physical perspective, we conclude that the counit isomorphism provides a

categorical equivalence, signifying an invariance in the translational code of

communication between Boolean information filtering contexts, acting as localisation

devices for measurement, and quantum systems.

7. Cohomological criterion of functoriality

We have reached the conclusion that if the right adjoint functor of the adjunction is a full

and faithful functor, then the counit is an isomorphism and conversely. In this case, we

have established a functoriality property, referring to invariant information transfer

between quantum observable algebras and Boolean information sieves of localisations. In

this section, we are going to establish a cohomological criterion elucidating that

functoriality property. For this purpose, we consider the counit of the adjunction,

expressed in terms of the quantum event algebra over which observables are defined

eL : GL U LRðLÞ ¼ RðLÞ^BM! L; ð7:1Þ

such that Diagram 12 commutes. The counit eL : GL! L is the first step of a functorial-

free resolution of an object L in L. Thus, by iteration of G, we may extend eL to a free

simplicial resolution of L in L, denoted by G*L! L, according to Diagram 13. In the

simplicial resolution represented by Diagram 13, e0;1;2 denotes a triplet of arrows, etc.

Notice that Gnþ1 is the term of degree n, whereas the face operator e i : G
nþ1 !Gn is

Gi+e+Gn2i, where 0 # i # n. We can verify the following simplicial identities:

e i+e j ¼ e jþ1+e i; ð7:2Þ

where i # j. The resolution G*L! L induces obviously a resolution in the comma

category ½L=L�, which we still denote by G*L! L.

Now, having at our disposal the resolution G*L! L, it is possible to define the

cohomology groups ~HnðL;XLÞ, n $ 0, of a quantum event algebra L in L with coefficients

in an L-module XL, relative to the given underlying functor of points R : L! SetsB
op

,

defined by RðLÞ : B 7! HomLðMðBÞ; LÞ, having a left adjoint L : SetsB
op

! L.
First of all, we define the notion of an L-module XL by the requirement that it is

equivalent to an abelian group object in the comma category ½L=L�. This follows from the

Diagram 12.
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general definition of categorical modules introduced in Barr and Beck (1966) and Beck

(1956) according to which: let Y be a category and let Y be an object in Y. Then, the
category ofModðYÞ is the category of abelian group objects in the comma category ½Y=Y�.
This definition is appropriate for the kind of module that is a coefficient module for

cohomology. For the interested reader, we have included an appendix which contains an

exposition of the relevant details for the case of commutative rings, as well as its

functionality for setting up the derivations functor, reproducing well-known algebraic

results.

Since XL can be characterised as an abelian group object in ½L=L�, the set HomLðL;XLÞ

has an abelian group structure for every object L in L, and moreover, for every arrow
�L! L in L, the induced map of sets HomLðL;XLÞ! HomLð �L;XLÞ is a map of abelian

groups.

Under the above specifications, an n-cochain of a quantum event algebra L with

coefficients in an L-module XL, where, by definition, XL is an object in ½L=L�Ab, is defined
as a map Gnþ1L!YLðXLÞ in the comma category ½L=L�, where

YL : ½L=L�Ab ! ½L=L� ð7:3Þ

denotes the corresponding inclusion functor of abelian group objects. Furthermore, we

define the derivations functor from the comma category L=L to the category of abelian

groups Ab:

Derð2;XLÞ : L=L! Ab; ð7:4Þ

where XL is an L-module, or equivalently, an abelian group object inL=L, by the following
requirement: if K : E! L is an object of L=L, then we have the isomorphism:

DerðE;XLÞ ø HomL=LðE;YLðXLÞÞ: ð7:5Þ

Thus, we may finally identify the set of n-cochains with the abelian group of

derivations ofGnþ1L into the abelian group object XL in ½L=L�Ab. Hence, we consider an n-
cochain as a derivation map Gnþ1L! XL.

Consequently, the face operators e i induce abelian group morphisms;

Derðe iL;XLÞ : DerðG
nL;XLÞ! DerðGnþ1L;XLÞ: ð7:6Þ

Thus, the cohomology can be established by application of the contravariant functor

Derð2;XLÞ on the free simplicial resolution of a quantum event algebra L in L, obtaining
the cochain complex of abelian groups represented by Diagram 14, where because of the

aforementioned simplicial identities, we have

d nþ1 ¼
X
i

ð21ÞiDerðe iL;XLÞ; ð7:7Þ

Diagram 13.
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where 0 # i # nþ 1, and also

d nþ1+d n ¼ 0; ð7:8Þ

written symbolically as

d 2 ¼ 0: ð7:9Þ

Now, we define the cohomology groups ~HnðL;XLÞ, n $ 0, of a quantum event algebra

L in L with coefficients in an L-module XL as follows:

~HnðL;XLÞ U Hn½DerðG*L;XLÞ� ¼
Kerðd nþ1Þ

Imðd nÞ
: ð7:10Þ

Notice that we may construct the L-module XL by considering the abelian group object in

the comma category ½L=L� that corresponds to a quantum observable

J ¼ cB+j : BorðRÞ! L, where j ¼ BorðRÞ!MðBÞ and cB : MðBÞ! L. The cohomol-

ogy groups ~HnðL;XLÞ express obstructions to the preservation of the information content

of a quantum event algebra with respect to measurement contexts of Boolean

coordinatisations. It is clear that if the counit of the adjunction eL : GL! L is an

isomorphism, then the cohomology groups vanish at all orders and conversely.

Finally, it is instructive to connect the cohomological analysis presented above with

the exactness properties of the right adjoint functor of the adjunction. We remind ourselves

that if the right adjoint functor of the adjunction is a full and faithful functor, then the

counit is an isomorphism and conversely. For this purpose, we define an L-module VL,

called suggestively a module of quantum 1-forms, by means of the following split short

exact sequence:

0! J ! RðLÞ^BM! L; ð7:11Þ

where J ¼ KerðeLÞ denotes the kernel of the counit of the adjunction, in case that the right

adjoint is not a full and faithful functor. According to the above, we define the L-module

VL as follows:

VL ¼
J

J 2
: ð7:12Þ

In this setting, we notice that the functor of points of a quantum event algebra restricted to

Boolean points, namely RðLÞ, is a left exact functor, because it is the right adjoint functor

of the established adjunction (MacLane 1971). Thus, it preserves the short exact sequence

defining the object of quantum 1-forms, in the following form:

0! RðJÞ! RðGðLÞÞ! RðLÞ: ð7:13Þ

Hence, we immediately obtain that RðVLÞ ¼ ðZ=Z 2Þ, where Z ¼ KerðRðeLÞÞ.

Diagram 14.
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Then, we introduce the notion of a functorial quantum connection, denoted by 7RðLÞ, in

terms of the following natural transformation:

7RðLÞ : RðLÞ! RðVLÞ: ð7:14Þ

Thus, the quantum connection 7RðLÞ induces a sequence of natural transformations as

follows:

RðLÞ! RðVLÞ! · · ·! RðVn
LÞ! · · ·: ð7:15Þ

Let us denote by

R7 : RðLÞ! RðV2
LÞ; ð7:16Þ

the composition 71+70 in the obvious notation, where 70 U 7RðLÞ. The natural

transformation R7 is called the curvature of the functorial quantum connection 7RðLÞ.

Furthermore, the latter sequence of natural transformations is actually a complex if and

only if R7 ¼ 0. We say that the quantum connection 7RðLÞ is integrable or flat if R7 ¼ 0,

referring to the above complex as the functorial de Rham complex of the integrable

connection 7RðLÞ in that case. In this setting, a non-vanishing curvature 7RðLÞ is understood

as the geometric effect being caused by cohomological obstructions that prevent the above

sequence of natural transformations from being a complex. Thus, we arrive at the

conclusion that a non-vanishing curvature 7RðLÞ, in case that the right adjoint is not a full

and faithful functor, prevents integrability of information transfer from quantum event

algebras to Boolean information sieves of localisations.

8. Conclusions

We have proposed a sheaf-theoretic representation of quantum event algebras and

quantum observables by means of Boolean information sieves of localisation. According

to this schema of interpretation, quantum information structures are being understood by

means of overlapping Boolean reference frames for the measurement of observables,

being pasted together by sheaf-theoretic means. The proposed schema has been formalised

categorically, as an instance of the adjunction concept. Moreover, the latter has been also

used for the formulation of the physically important notions of integrability and invariance

pertaining to information transfer from quantum event algebras to Boolean coordinatisa-

tion systems. These notions have been technically implemented using the counit of the

established adjunction, as well as its iterations forcing a free simplicial resolutions of a

quantum event algebra, by cohomological means. Conclusively, it has been demonstrated

that

[i]. The information transfer from quantum event algebras to Boolean coordinatisation

systems is integrable if the curvature of the functorial quantum connection 7RðLÞ

vanishes, namely R7 ¼ 0.

[ii]. The information content of a quantum observable structure remains invariant with

respect to measurement contexts of Boolean coordinatisations, if and only if the counit

of the adjunction, restricted to covering systems, qualified as Boolean information

sieves of localisations, is an isomorphism. The latter property is equivalent to the

triviality of the cohomology groups ~HnðL;XLÞ, meaning the absence of obstructions to

gluing information globally among Boolean measurement contexts.
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The physical significance of the sheaf-theoretic representation boils down to the proof

that the totality of the content of information included in a quantum observable structure is

functorially preserved by some covering Boolean system, if and only if that system forms a

Boolean information sieve of localisations, such that the counit of the adjunction is an

isomorphism. In this perspective, efficient handling of quantum information becomes

precisely the area of application of the core relationship between quantum observables and

interconnected localised Boolean information resources, bypassing in this manner the

global classical information encoding limits.
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A Categorical modules and derivations

The first basic objective of the categorical perspective on abstract differential calculus is to express
the notions of modules and derivations of a commutative unital ring B in B, where B denotes the
category of commutative unital rings of scalars, intrinsically with respect to the information
contained in the category B. This can be accomplished by using the method of categorical
relativisation, which is based on the passage to the comma categoryB=B. More concretely, the basic
problem is with the possibility of representing the information contained in a B-module, where B is a
commutative unital ring in B, with a suitable object of the relativisation of B with respect to B,
namely with an object of the comma categoryB=B. For this purpose, we define the split extension of
the commutative ring B by an B-module M, denoted by B%M, as follows. The underlying set of
B%M is the Cartesian product B £M, where the group and ring theoretic operations are defined,
respectively, as

ða;mÞ þ ðb; nÞ U ðaþ b;mþ nÞ;

ða;mÞ·ðb; nÞ U ðab; a·nþ b·mÞ:

Notice that the identity element of B%M is ð1B; 0MÞ, and also that the split extension B%M contains
an ideal 0B £M U kMl, which corresponds naturally to the B -moduleM. Thus, given a commutative
ring B in B, the information of an B-module M consists of an object kMl (ideal in B%M), together
with a split short exact sequence in B

kMl a B%M ! B:

We infer that the ideal kMl is identified with the kernel of the epimorphism B%M ! B, namely

kMl ¼ KerðB%M ! BÞ:

From now, we focus our attention on the comma category B=B, noticing that idB : B! B is the
terminal object in this category. If we consider the split extension of the commutative ring B by a B-
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module M that is B%M, then the morphism

l : B%M ! B;

ða;mÞ 7! a

is obviously an object ofB=B. Moreover, it is easy to show that it is actually an abelian group object
in the comma category B=B. This equivalently means that for every object j in B=B, the set of
morphisms HomB=Bðj; lÞ is an abelian group in Sets. Moreover, the arrow g : k! l is a morphism
of abelian groups in B=B, if and only if for every j in B=B, the morphism

ĝj : HomB=Bðj; kÞ! HomB=Bðj; lÞ

is a morphism of abelian groups in Sets. We denote the category of abelian group objects in B=B by
the suggestive symbol ½B=B�Ab. Based on our previous remarks, it is straightforward to show that the
category of abelian group objects in B=B is equivalent to the category of B-modules, namely

½B=B�Ab ø MðBÞ:

Thus, we have managed to characterise intrinsically B-modules as abelian group objects in the
relativisation of the category of commutative unital rings B with respect to B, and moreover, we have
concretely identified them as kernels of split extensions of B.

The characterisation of B-modules as abelian group objects in the comma category B=B is
particularly useful if we consider a B-module M as a codomain for derivations of objects ofB=B. For
this purpose, let us initially notice that if k : A! B is an arbitrary object inB=B, then any B-module
M is also an A-module via the morphism k. We define a derivations functor from the comma
category B=B to the category of abelian groups Ab:

Derð2;MÞ : B=B! Ab:

Then, if we evaluate the derivations functor at the commutative arithmetic A, we obtain

DerðA;MÞ ø HomB=BðA;B%MÞ:

This means that given an object k : A! B in B=B, then a derivation d : A!M is the same as the
following morphism in B=B:

Now, we notice that the morphism: l : B%M ! B is actually an object in ½B=B�Ab. Hence, we
consider it as an object of ½B=B� via the action of an inclusion functor:

YB : ½B=B�Ab a ½B=B�;

½l : B%M ! B� 7! ½YBðlÞ : YBðMÞ! B�:

Thus, we obtain the isomorphism:

DerðA;MÞ ø HomB=BðA;YBðMÞÞ:

The inclusion functor YB has a left adjoint functor:

VB : ½B=B�! ½B=B�Ab:
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Consequently, if we further take into account the equivalence of categories

½B=B�Ab ø MðBÞ;

the above isomorphism takes the following final form:

DerðA;MÞ ø HomMðBÞ ðVBðAÞ;MÞ:

We conclude that the derivations functor Derð2;MÞ : B=B! Ab is being represented by the
abelianisation functor VB : ½B=B�! ½B=B�Ab. Furthermore, the evaluation of the abelianisation
functor VB at an object k : A! B of B=B, namely VBðAÞ, is interpreted as the B-module of
differentials on A. Finally, it is straightforward to see that evaluating at the terminal object of B=B,
we obtain

bDDerðB;MÞ ø HomMðBÞ ðVBðBÞ;MÞ:

This means that the covariant functor of B-modules valued derivations of B, denoted by dDerDerðB;2Þ,
is being representable by the free B-module of differential 1-forms of B, denoted byVB U V1 in the
category of B-modules, according to the isomorphism:

dDerDerðB;MÞ ø HomMðBÞ ðVB;MÞ:

Furthermore, if B is a C-algebra, then the covariant functor of B-modules C-valued derivations of B,
denoted by

�dDerDerCðB;2Þ, is being representable by the free B-module of differential 1-forms of B over
C, denoted by VB=C U V1

B=C in the category of B-modules, according to the isomorphism:

dDerDerCðB;MÞ ø HomMðBÞ ðVB=C;MÞ:

Hence, in general, if B is a C-algebra, the object V1
B=C is characterised categorically as the universal

object of relative differential 1-forms in MðBÞ and the derivation dB=C : B!V1
B=C as the universal

derivation.
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