
Found Phys
DOI 10.1007/s10701-013-9733-5

A Categorial Semantic Representation of Quantum
Event Structures

Elias Zafiris · Vassilios Karakostas

Received: 23 May 2012 / Accepted: 16 July 2013
© Springer Science+Business Media New York 2013

Abstract The overwhelming majority of the attempts in exploring the problems re-
lated to quantum logical structures and their interpretation have been based on an
underlying set-theoretic syntactic language. We propose a transition in the involved
syntactic language to tackle these problems from the set-theoretic to the category-
theoretic mode, together with a study of the consequent semantic transition in the
logical interpretation of quantum event structures. In the present work, this is real-
ized by representing categorically the global structure of a quantum algebra of events
(or propositions) in terms of sheaves of local Boolean frames forming Boolean lo-
calization functors. The category of sheaves is a topos providing the possibility of
applying the powerful logical classification methodology of topos theory with refer-
ence to the quantum world. In particular, we show that the topos-theoretic represen-
tation scheme of quantum event algebras by means of Boolean localization functors
incorporates an object of truth values, which constitutes the appropriate tool for the
definition of quantum truth-value assignments to propositions describing the behav-
ior of quantum systems. Effectively, this scheme induces a revised realist account of
truth in the quantum domain of discourse. We also include an Appendix, where we
compare our topos-theoretic representation scheme of quantum event algebras with
other categorial and topos-theoretic approaches.
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1 Introduction

The logic of a physical theory reflects the structure of the propositions describing
the behavior of a physical system in the domain of the corresponding theory. The
original quantum logical formulation of quantum theory depends in an essential way
on the identification of propositions with projection operators on a complex Hilbert
space H . In this framework, due to the one-to-one correspondence between the set
of all projection operators and the set of all closed subspaces of H , the equivalence
of propositions and events is made literal (e.g., [5]). In this sense, the Hilbert-space
formalism of quantum theory associates events with closed subspaces of a suitable
Hilbert space corresponding to a quantum system. Then, the quantum event structure
is identified with the lattice of closed linear subspaces of the Hilbert space, ordered
by inclusion and carrying an orthocomplementation operation which is given by the
orthogonal complement of the closed subspaces, thus forming a complete, atomic,
orthomodular lattice. A non-Boolean logical structure is effectively induced which
has its origin in quantum theory.

On the contrary, the logic underlying the propositional or event structure of clas-
sical physics is Boolean, in the sense that the algebra of propositions of a classical
system is isomorphic to the lattice of subsets of phase space, a Boolean lattice that
can be interpreted semantically by a two-valued truth-function. This means that to
every classical mechanical proposition one of the two possible truth values 1 (true)
and 0 (false) can be assigned. Thus, the propositions of a classical system are se-
mantically decidable. From a physical point of view, this is immediately linked to the
fact that classical physics views objects-systems as bearers of determinate properties.
That is, properties of classical systems are considered as being intrinsic to the system
and independent of whether or not any measurement is performed on them.

Unlike the case in classical mechanics, however, for a given quantum system, the
propositions represented by projection operators or Hilbert space subspaces are not
partitioned into two mutually exclusive and collectively exhaustive sets representing
either true or false propositions (e.g., [18]). This kind of semantic ambiguity consti-
tutes an inevitable consequence of the Hilbert-space structure of conventional quan-
tum mechanics demonstrated rigorously, for the first time, by Kochen-Specker’s [14]
theorem. According to this, for any quantum system associated to a Hilbert space
of dimension higher than two, there does not exist a two-valued, truth-functional as-
signment h : LH → {0,1} on the set of closed linear subspaces, LH , interpretable as
events or elementary quantum mechanical propositions, preserving the lattice opera-
tions and the orthocomplement. In other words, the gist of the theorem, when inter-
preted semantically, asserts the impossibility of assigning definite truth values to all
propositions pertaining to a physical system at any one time, for any of its quantum
states, without generating a contradiction.

It should be noted, however, that although the preceding Kochen-Specker result
forbids a global, absolute assignment of truth values to quantum mechanical propo-
sitions, it does not exclude ones that are contextual (e.g., [12]). Here, “contextual”
means that the truth value given to a proposition depends on which subset of mu-
tually commuting projection operators (meaning “simultaneously measurable”) one
may consider it to be a member, i.e., it depends on which other compatible proposi-
tions are given truth values at the same time. Of course, the formalism of quantum
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theory does not imply how such a contextual valuation might be obtained, or what
properties it should possess.

To this end, we resort to the powerful methods of categorical topos theory, which
directly captures the idea of structures varying over contexts, thus providing a natural
setting for studying contextuality phenomena. Specifically, the research path we pro-
pose implements the intuitively clear idea of probing the global structure of a quan-
tum algebra of events in terms of structured multitudes of interlocking local Boolean
logical frames. It is probably one of the deepest insights of modern quantum theory
that whereas the totality of all experimental/empirical facts can only be represented
in a globally non-Boolean structure, the acquisition of every single fact depends on
a locally Boolean context. Indeed, we view each preparatory Boolean environment
of measurement as a context that offers a “classical perspective” on a quantum sys-
tem. A classical perspective or context is nothing but a set of commuting physical
quantities, or, more precisely, a complete Boolean algebra of commuting projection
operators generated by such a set. Physical quantities in any such algebra can be
given consistent values, as in classical physics. Thus, each context functions as a
“Boolean frame” providing a “local classical viewpoint on reality”. No single context
or perspective can deliver a complete picture of the quantum system, but, by applying
category-theoretic reasoning, it is possible to use the collection of all of them in an
overall structure that will capture the entire system. It is also of great importance how
the various contexts relate to each other. Categorically speaking, this consideration is
naturally incorporated into our scheme, since the category-theoretic representation of
quantum event structures in terms of Boolean localization contexts can be described
by means of a topos, which stands for a category of sheaves of variable local Boolean
frames encoding the global logical information of these localization contexts.

In a well defined sense, topos theory provides us with the first natural examples of
global multi-valued functional truth structures. By definition, a topos, conceived as
a category of sheaves for a categorical topology, is equipped with an internal object
of truth values, called a subobject classifier, which generalizes the classical binary
object of truth values used for valuations of propositions. As explained below, this
generalized object of truth values in a topos is not ad hoc, but reflects genuine con-
straints of the surrounding universe of discourse. We will show, in particular, that
the topos-theoretic representation scheme of quantum event algebras by means of
variable local Boolean frames induces an object of truth values, or classifying ob-
ject, which constitutes the appropriate tool for the definition of quantum truth-value
assignments, corresponding to valuations of propositions describing the behavior of
quantum systems. This, in effect, characterizes the novelty of our approach and its
fruitfulness for a revised realist account of truth in the quantum domain in compar-
ison to a multiplicity of various other approaches on the foundations of quantum
physics.

2 Category-Theoretic Scheme of Truth Value Assignment in Quantum
Mechanics

As indicated in the introduction, the global semantic ambiguity of the non-Boolean
logical structure of quantum mechanics, expressed formally by the Kochen-Specker



Found Phys

theorem, does not exclude local two-valued truth-functional assignments with respect
to complete Boolean algebras of projection operators on the Hilbert space of a quan-
tum system. More precisely, each self-adjoint operator representing an observable
has associated with it a Boolean subalgebra which is identified with the Boolean al-
gebra of projection operators belonging to its spectral decomposition. Hence, given
a set of observables of a quantum system, there always exists a complete Boolean
algebra of projection operators, viz. a local Boolean subalgebra of the global non-
Boolean event algebra of a quantum system with respect to which a local two-valued
truth-functional assignment is meaningful, if and only if the given observables can be
simultaneously measurable. Consequently, the possibility of local two-valued truth-
functional assignments of the global non-Boolean event algebra of a quantum sys-
tem points to the assumption that complete Boolean algebras play the role of local
Boolean logical frames for contextual true/false value assignments. The modeling
scheme we propose in order to implement this idea in a universal way, so that the
global structure of a quantum system to be modeled categorically in terms of a topos
of sheaves of local Boolean frames, uses the technical apparatus of categorical sheaf
theory [2, 16].

It is not possible to provide here a concise account of category theory. For a gen-
eral introduction to this well-developed mathematical framework, topos theory and
categorial logic, the reader may consult Lawvere and Schanuel [15], Bell [4] and
Goldblatt [7].

2.1 Conceptual Framework

The basic ideas pertaining to the proposed semantic interpretation of quantum event
structures along category-theoretic lines may be summarized as follows: Firstly, we
introduce the notion of a topological covering scheme of a quantum event algebra
[20] consisting of epimorphic families of local Boolean logical frames. These frames
provide local covers of a quantum event algebra in terms of complete Boolean al-
gebras. The local Boolean covers capture individually complementary features of a
quantum algebra of events and provide collectively its categorical local decomposi-
tion in the descriptive terms of Boolean logical frames. Technically, this is described
by an action of a category of local Boolean frames on a global quantum event al-
gebra, forming a presheaf. Secondly, we define appropriate compatibility conditions
between overlapping local Boolean covers. This is necessary since it enforces an ef-
ficient, uniquely defined pasting code between different local covers of a quantum
algebra of events. Technically, this is described by the notion of a Boolean localiza-
tion functor, or equivalently, by a structure sheaf of Boolean coefficients of a quantum
event algebra. Thirdly, we establish the necessary and sufficient conditions for the iso-
morphic representation of quantum event algebras in terms of Boolean localization
functors.

The major technical and semantical method used in order to establish these con-
ditions is based on the existence of a pair of adjoint functors between presheaves
of Boolean logical frames and quantum event algebras. This pair of adjoint functors
formalizes categorically the process of encoding and decoding information between
Boolean frames and quantum event algebras respecting their distinctive structural
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form. In general, the existence of an adjunction between two categories gives rise to
a family of universal morphisms (called unit and counit of the adjunction), one for
each object in the first category and one for each object in the second. In this way,
each object in the first category induces a certain property in the second category and
the universal morphism carries the object to the universal for that property. Most sig-
nificantly, every adjunction extends to an adjoint equivalence of certain subcategories
of the initially correlated categories. It is precisely this category-theoretic fact which
determines the necessary and sufficient conditions for the isomorphic representation
of quantum event algebras in terms of sheaves of Boolean coefficients.

The notion of a sheaf incorporates the requirements of consistency under extension
from the local Boolean to the global quantum level, and inversely, under reduction of
the global quantum to the local Boolean level. The functional dependence implicated
by a categorical sheaf relativizes the presupposed rigid relations between quantum
events with respect to variable local Boolean frames conditioning the actualization of
events. The category of sheaves of variable local Boolean frames encoding the global
logical information of Boolean localization functors constitutes a topos providing
the possibility of applying the powerful logical classification methodology of topos
theory with reference to the quantum universe of discourse.

2.2 Basic Structures in the Functorial Approach to Quantum Mechanics

A Boolean categorical event structure is a small category, denoted by B, which is
called the category of Boolean event algebras. The objects of B are σ -Boolean al-
gebras of events and the arrows are the corresponding Boolean algebraic homomor-
phisms.

A quantum categorical event structure is a locally small co-complete category,
denoted by L, which is called the category of quantum event algebras. The objects of
L are quantum event algebras and the arrows are quantum algebraic homomorphisms.
A quantum event algebra L in L is defined as an orthomodular σ -orthoposet [20],
that is, as a partially ordered set of quantum events, endowed with a maximal element
1, and with an operation of orthocomplementation [−]∗ : L → L, which satisfy, for
all l ∈ L, the following conditions: [a] l ≤ 1, [b] l∗∗ = l, [c] l ∨ l∗ = 1, [d] l ≤ ĺ ⇒
ĺ∗ ≤ l∗, [e] l⊥ĺ ⇒ l ∨ ĺ ∈ L, [f] for l, ĺ ∈ L, l ≤ ĺ implies that l and ĺ are compatible,
where 0 := 1∗, l⊥ĺ := l ≤ ĺ∗, and the operations of meet ∧ and join ∨ are defined as
usually.

We recall that l, ĺ ∈ L are compatible if the sublattice generated by {l, l∗, ĺ, ĺ∗} is a
Boolean algebra, namely if it is a Boolean sublattice. The σ -completeness condition,
meaning that the join of countable families of pairwise orthogonal events exists, is
required in order to have a well defined theory of quantum observables over L [19].
In the sequel, the measure-theoretic σ -completeness condition is not going to play
any particular role in the exposition of the arguments, so the interested reader may
drop it and consider complete Boolean algebras and complete orthomodular lattices
instead.

The functor category of presheaves on Boolean event algebras, denoted by
SetsB

op

, has objects all functors P : Bop → Sets, and morphisms all natural transfor-
mations between such functors, where Bop is the opposite category of B. Each object
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P in the category of presheaves SetsB
op

is a contravariant set-valued functor on B,
called a presheaf on B, defined as follows: For each Boolean algebra B of B, P(B) is
a set, and for each Boolean homomorphism f : C → B , P(f ) : P(B) → P(C) is a set-
theoretic function such that if p ∈ P(B), the value P(f )(p) for an arrow f : C → B

in B is called the restriction of p along f and is denoted by P(f )(p) = p · f . We
notice that each Boolean algebra B of B gives rise to a contravariant Hom-functor
y[B] := HomB(−,B). This functor defines a presheaf on B for each B in B. Con-
comitantly, the functor y is a full and faithful functor from B to the contravariant
functors on B, viz. y : B ��

��
��
��
��
��
��
��
��

������������������ SetsB
op

, defining an embedding B ↪→ SetsB
op

, which
is called the Yoneda embedding [2, 16].

The category of elements of a presheaf P, denoted by
∫
(P,B), has objects all

pairs (B,p), and morphisms (B́, ṕ)→(B,p) are those morphisms u : B́→B of B for
which p · u = ṕ, that is the restriction or pullback of p along u is ṕ. Projection on
the second coordinate of

∫
(P,B) defines a functor

∫
P : ∫ (P,B)→B, called the split

discrete fibration induced by P, where B is the base category of the fibration as in the
diagram below. We note that the fibers are categories in which the only arrows are
identity arrows. If B is an object of B, the inverse image under

∫
P of B is simply the

set P(B), although its elements are written as pairs so as to form a disjoint union.
∫
(P,B)

∫
P

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

B P
��
��
��
��
��
��
��
��
��

������������������ Sets

The Boolean realization functor of a quantum categorical event structure L is
defined by:

R : L → SetsB
op

,

where the action on a Boolean algebra B in B is given by:

R(L)(B) := RL(B) = HomL
(
M(B),L

)
.

The functor R(L)(−) := RL(−) = HomL(M(−),L) is called the functor of Boolean
frames of L, where M : B → L is a Boolean modeling functor of L. The action on a
Boolean homomorphism D

x
��
��
��
��
��
��
��
��
��

������������������ B in B, for v : M(B) ��
��
��
��
��
��
��
��
��

������������������ L is given by:

R(L)(x) : HomL
(
M(B),L

)
��
��
��
��
��
��
��
��
��

������������������ HomB
(
M(D),L

)

R(L)(x)(v) = v ◦ x.

The crucial conceptual and technical distinguishing feature of the proposed categor-
ical modeling scheme of quantum event structures and their truth-objects in compar-
ison to other categorical approaches (see Appendix A.1) is that it is based on the
existence of a categorical adjunction between the categories SetsB

op

and L. More
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precisely, there exists a pair of adjoint functors L � R as follows [19]:

L : SetsB
op

��
��
��
��
��
��
��
��
��

������������������

������������������

��
��
��
��
��
��
��
��
��

L : R.

The Boolean frames-quantum adjunction consists of the functors L and R, called left
and right adjoints, as well as the natural bijection:

Nat
(
P,R(L)

) ∼= HomL(LP,L).

Hence, the Boolean realization functor of L, realized for each L in L by its functor
of Boolean frames, viz. by

R(L) : B 
→HomL
(
M(B),L

)
,

has a left adjoint L : SetsB
op → L, which is defined for each presheaf P in SetsB

op

as
the colimit (inductive limit)

L(P) = Colim

{∫
(P,B)

∫
P

��
��
��
��
��
��
��
��
��

������������������ B M
��
��
��
��
��
��
��
��
��

������������������ L
}

.

Consequently, we obtain immediately that the modeling functor M evaluated at a
Boolean algebra B , viz. M(B), is characterized as the colimit of the representable
presheaf y[B] on the category of Boolean event algebras B, as follows:

Ly[B](B) ∼= M(B).

In order to obtain a clear intuitive idea of the function of the left-adjoint functor
by the colimit construction it is instructive to compute it explicitly for the case of
interest, where the functor on which it acts is the functor of Boolean frames of L. For
simplicity, we carry out the construction using set-theoretic arguments. The general
case is presented in detail in Appendix A.2.

For this purpose we define the set of pointed Boolean frames of a quantum event
algebra L as follows:

Y(RL) = {
(ψM(B), q)/

(
ψM(B) : M(B) → L

)
, q ∈ B

}
.

Note that the morphisms ψM(B) : M(B) → L denote Boolean frames of L, encoded
as elements in the category of Boolean frames of L, viz.

∫
(RL,B). We notice that

if there exists a Boolean morphism u : B́ → B such that: u(q́) = q and ψM(B́)
=

ψM(B) · u, then we may define a transitive and reflexive relation � on the set Y(RL).
Of course the inverse also holds true. Thus, we have:

(ψM(B) ◦ u,q)�(
ψM(B), u(q́)

)

for any Boolean morphism u : B́ → B in the base category B. The next step is to
make this relation also symmetric by postulating that for pointed Boolean frames ζ ,
η in Y(RL), where ζ , η denote pairs in the above set, we have

ζ ∼ η,
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if and only if ζ�η or η�ζ . Finally, by considering a sequence ξ1, ξ2, . . . , ξk of ele-
ments of the set Y(RL) and also ζ , η such that:

ζ ∼ ξ1 ∼ ξ2 ∼ · · · ∼ ξk−1 ∼ ξk ∼ η,

we may define an equivalence relation on the set Y(RL) if there exists a path of
Boolean transition morphisms as follows:

ζ �� η := ζ ∼ ξ1 ∼ ξ2 ∼ · · · ∼ ξk−1 ∼ ξk ∼ η.

Then, for each pair ζ = (ψM(B), q) ∈ Y(RL), we define the equivalence class at
pointed Boolean frame ζ as follows:

Qζ = {
ι ∈ Y(RL) : ζ �� ι

}
.

We finally define the quotient set:

Y(RL)/ �� := {
Qζ : ζ = (ψM(B), q) ∈ Y(RL)

}
,

and use the notation Qζ = ‖(ψM(B), q)‖, where ‖(ψM(B), q)‖ denotes the equiva-
lence class at pointed Boolean frame ζ = (ψM(B), q). The quotient set Y(RL)/ ��
defines the colimit (inductive limit) in the category of Boolean frames of the functor
RL, that is

Y(RL)/ �� = Colim

{∫
(RL,B) → B → L

}

,

by noticing that it is naturally endowed with a quantum event algebra structure as
follows:

1. The orthocomplementation is defined by Q∗
ζ = ‖(ψM(B), q)‖∗ = ‖(ψM(B), q

∗)‖.
2. The unit element is defined by 1 = ‖(ψM(B),1)‖.
3. The partial order structure on the quotient Y(RL)/ �� is defined by ‖(ψM(B), q)‖ �

‖(ψM(C), r)‖ if and only if d1 � d2 where we have made the following identifi-
cations: ‖(ψM(B), q)‖ = ‖(ψM(D), d1)‖ and ‖(ψM(C), r)‖ = ‖(ψM(D), d2)‖, with
d1, d2 ∈ M(D), such that β(d1) = q , γ (d2) = r , where β : M(D) → M(B), and
γ : M(D) → M(C) is the pullback of α : M(B) → L along λ : M(C) → L in the
category of quantum event algebras.

M(D)
β

��
��
��
��
��
��
��
��
��

������������������ M(B)

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

γ

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

α

M(C)
λ

��
��
��
��
��
��
��
��
��

������������������ L

The physical meaning of the adjunction between presheaves of Boolean logical
frames and quantum event algebras is made transparent if we consider that the pair
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of adjoint functors formalizes the process of encoding and decoding information rel-
evant to the structural form of their domain and codomain categories. If we think of
SetsB

op

as the categorical universe of variable local Boolean frames modeled in Sets,
and of L as the categorical universe of quantum event structures, then the functor
L : SetsB

op → L signifies a translational code from the level of local Boolean alge-
bras to the level of global quantum event algebras, whereas the Boolean realization
functor R : L → SetsB

op

a translational code in the inverse direction. In general, the
structural content of the information is not possible to remain completely invariant
with respect to translating from one categorical universe to another and conversely.
However, there remain two alternatives for a variable set over local Boolean frames P
to exchange information with a quantum algebra L. Either the content of information
is transferred in quantum terms with the inductive limit in the category of elements
of P translating, represented as the quantum morphism LP → L, or the content of
information is transferred in Boolean terms with the functor of Boolean frames of
L translating, represented correspondingly as the natural transformation P → R(L).
Then, the natural bijection corresponds to the assertion that these two distinct ways
of information transfer are equivalent. Most significantly, the totality of the structural
information included in quantum event algebras remains invariant under Boolean en-
codings, corresponding to local Boolean logical frames, if and only if, the adjunctive
correspondence can be appropriately restricted to an equivalence of the functorially
correlated categories. For this purpose, we need to localize the category of presheaves
of Boolean logical frames and concomitantly define a functorial covering scheme of
quantum event algebras induced by these local Boolean frames.

A functor of Boolean coverings for a quantum event algebra L in L is defined as
a subfunctor S of the functor of Boolean frames R(L) of L,

S ↪→ R(L).

A functor of Boolean coverings for an L in L is equivalent to an algebraic ideal or
sieve of quantum homomorphisms S � R(L), defined by the requirement: For each
B in B, S(B) ⊆ [R(L)](B) is a set of quantum homomorphisms of the form ψB :
M(B) → L, called Boolean covers of L, satisfying the following property:

〈If[ψB : M(B) → L] ∈ S(B), and M(v) : M(B́) → M(B) in L, for v : B́ → B in
B, then [ψB ◦ M(v) : M(B́) → L] ∈ S(B)〉.

A family of Boolean covers ψB : M(B) ��
��
��
��
��
��
��
��
��

������������������ L, B in B, is the generator of an ideal
of Boolean coverings S, if and only if, this ideal is the smallest among all that con-
tains that family. The ideals of Boolean coverings for an L in L constitute a partially
ordered set under inclusion. The minimal ideal is the empty one, namely S(B) = ∅
for all B in B, whereas the maximal ideal is the functor of Boolean frames R(L) of
L itself.

The pasting or gluing isomorphism of the Boolean covers ψB : M(B) ��
��
��
��
��
��
��
��
��

������������������ L, B

in B, and ψ
B́

: M(B́) ��
��
��
��
��
��
��
��
��

������������������ L, B́ in B, is defined as follows:

Ω
B,B́

: ψ
B́B

(
M(B)×LM(B́)

)
��
��
��
��
��
��
��
��
��

������������������ ψ
BB́

(
M(B)×LM(B́)

)

Ω
B,B́

= ψ
BB́

◦ ψ
B́B

−1
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where M(B)×LM(B́), together with the two projections ψ
BB́

and ψ
B́B

, is the pull-
back or categorical overlap of the Boolean covers ψB : M(B) ��

��
��
��
��
��
��
��
��

������������������ L, B in B, and
ψ

B́
: M(B́) ��

��
��
��
��
��
��
��
��

������������������ L, B́ in B, with common codomain a quantum event algebra L, as
shown in the following diagram:

M(B)×LM(B́)
ψ

B,B́
��
��
��
��
��
��
��
��
��

������������������ M(B)

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

ψ
B́,B

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

ψB

M(B́)
ψ

B́
��
��
��
��
��
��
��
��
��

������������������ L

An immediate consequence of the previous definition is the satisfaction of the follow-
ing Boolean coordinate cocycle conditions for injective Boolean covers: ΩB,B = 1B ,
Ω

B,B́
◦ Ω

B́,
´́
B

= Ω
B,

´́
B

and Ω
B,B́

= Ω−1
B́,B

whenever they are defined. Thus, the

pasting isomorphism assures that the Boolean covers ψ
B́B

: (M(B)×LM(B́)) → L

and ψ
BB́

: (M(B)×LM(B́)) → L cover the same part of L compatibly.
Now, given an ideal of Boolean coverings for an L ∈ L, we call it a functor of

Boolean localizations of L, or a structure sheaf of Boolean coefficients of L, if and
only if the Boolean coordinate cocycle conditions are satisfied.

For any presheaf functor P in the topos SetsBop

, the unit of the Boolean frames-
quantum adjunction is defined as follows:

δP : P ��
��
��
��
��
��
��
��
��

������������������ RLP.

On the other side, for each quantum event algebra L in L the counit is defined as
follows:

εL : LR(L) ��
��
��
��
��
��
��
��
��

������������������ L.

The representation of a quantum event algebra L in L, in terms of the functor
of Boolean frames R(L) of L, is full and faithful, if and only if the counit of
the Boolean frames-quantum adjunction is a quantum algebraic isomorphism, that
is structure-preserving, injective and surjective. In turn, the counit of the Boolean
frames-quantum adjunction is a quantum algebraic isomorphism, if and only if the
right adjoint functor is full and faithful. In the latter case we characterize the Boolean
modeling functor M : B → L as a proper or dense modeling functor. We can show
that the Boolean realization functor is full and faithful if it corresponds to a functor
of Boolean localizations of L [19]. Thus, the counit of the Boolean frames-quantum
adjunction is an isomorphism if it is restricted to an ideal of Boolean localizations of
L. Using the more precise terminology of Grothendieck sites [20], we may consider
the category of Boolean event algebras as a generating subcategory of the category
of quantum event algebras. Then, we may endow the base category of Boolean event
algebras with a Grothendieck topology (called the topology of epimorphic families),
by asserting that a sieve S on a Boolean algebra B in B is to be a covering sieve of
B , when the arrows s : C → B belonging to the sieve S (Boolean coverings) together
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form an epimorphic family in L. This requirement may be equivalently expressed in
terms of a map

GS :
∐

(s:C→B)∈S
M(C) → M(B)

being an epimorphism in L. We note that this is a subcanonical Grothendieck topol-
ogy, and thus all representable presheaves on B are sheaves. Then, the presheaf func-
tor of Boolean frames becomes a sheaf with respect to every covering sieve in this
Grothendieck topology. As a corollary the counit of the Boolean frames-quantum
adjunction is an isomorphism restricted to every covering sieve of L.

From the above, we deduce that the representation of an L in L, in terms of R(L)

of L, is full and faithful, if the Boolean frames-quantum adjunction is restricted to
a functor of Boolean localizations (covering sieve) of L. As a corollary, we obtain
that L is a reflection of the topos of presheaves SetsBop

on the base category of
Boolean frames, and the total information content of a quantum event algebra L in L
is preserved by some ideal of Boolean covers, if and only if this ideal forms a Boolean
localization functor of L.

For reasons of completeness, we note that together with a logical event structure,
there always exists a corresponding probabilistic structure, defined by means of con-
vex sets of measures on that logic. In this sense, the probabilistic structure of a classi-
cal system is described by convex sets of probability measures on the Boolean algebra
of events of this system, whereas the probabilistic structure of a quantum system is
described by convex sets of probability measures on the quantum logical event struc-
ture of that system. More accurately, in the case of quantum systems, each quantum
probability measure, called quantum probabilistic state, is defined by a measurable
mapping:

p : L → [0,1],
such that the following conditions are satisfied: p(1) = 1 and p(x ∨ y) = p(x) +
p(y), if x ⊥ y, where, x, y ∈ L. Then, we may define the categories of quantum
probabilistic states and Boolean probabilistic states by passing from the logical cate-
gories to the corresponding probabilistic categories by slicing over [0,1] and respect-
ing the measure-theoretic requirements. Finally, using analogous arguments we can
show that quantum probabilistic states are represented as equivalence classes of local
Boolean probabilistic states with respect to epimorphic families of covering systems
induced by Boolean probabilistic frames [21].

2.3 The Quantum Truth-Object

Since L is a reflection of SetsBop

, it is a complete category and monic arrows are
preserved by the right adjoint Boolean realization functor R. In particular, there exist
a terminal object and pullbacks of monic arrows [16]. Thus, there exists a subobject
functor for a quantum categorical event structure L equipped with Boolean localiza-
tion functors.

Definition The subobject functor of L is defined as follows:

Sub : Lop → Sets.
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The functor Sub is a contravariant functor by pulling back. Composition with a
proper Boolean modeling functor defines a presheaf in SetsBop

, called the Boolean
frames modeled subobject functor of L, as follows:

Sub ◦ M : Bop → Lop → Sets.

In a compact notation we obtain:

ΥM := Υ
(
M(−)

) := Sub ◦ M : Bop → Sets,

such that,

Bop � B 
→ {[
Dom(m)↪→M(B)

]} ∈ Sets

where the range denotes the set of subobjects of M(B), viz. the set of equivalence
class of monic quantum homomorphisms m from Dom(m) to M(B).

The set ΥM(B) = Υ (M(B)) is defined as the set of all subobjects of M(B), for
every B in B, in the category L. Notice that the set Υ (M(B)), for every B in B, is a
partially ordered set under inclusion of subobjects of M(B).

A natural question arising in this categorical setting is the following: Is the sub-
object functor representable in L by means of a concrete quantum event algebra Ω

in L that special object which would play the role of a classifying object in L? The
representation of the subobject functor in a quantum categorical event structure L is
significant because it would allow to interpret the concrete classifying object Ω as
a truth values object in L,1 in a sense similar to the role played by the two-valued
Boolean object 2 := {0,1} in characterizing the logic of propositions referring to the
behavior of classical systems. In this case, subobjects of a quantum event algebra
should be characterized in terms of characteristic functions, which take values not in
2, but precisely in the truth values object Ω in L. Most importantly, in that case the
category of quantum event algebras L is endowed with a subobject classifier, defined
as follows:

Definition The subobject classifier of the category of quantum event algebras is a
universal monic quantum homomorphism,

T := True : 1 ↪→ Ω

such that, to every monic arrow, m : K ↪→ L in L, there is a unique characteristic
arrow φm, which, with the given monic arrow m, forms a pullback diagram:

1It is instructive to note that in an arbitrary topos, the existence of a classifying object or a subobject
classifier Ω takes the role of the set {0,1} ∼= {false, true} of truth values. If B is an object in the topos, and A

denotes a subobject of B , then, there is a monic arrow (monomorphism) A → B , generalizing categorically
the inclusion of a subset into a larger set. Like in the familiar topos, Sets, of sets and functions, we can
also characterize A as a subobject of B by an arrow from B to the subobject classifier Ω . Intuitively,
this “characteristic arrow”, B → Ω , describes how A “lies in” B; in Sets, this arrow is the characteristic
function χS : X → {0,1} classifying whether a point χ ∈ X lies in S or not. In general, the elements of the
subobject classifier, understood as the arrows 1 → Ω , are the truth values, just like “false” and “true”, the
elements of {false, true}, are the truth values available in Sets.
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������������������ Ω

This is equivalent to saying that every subobject of L in L is uniquely a pullback of
the universal monic T .

From the general definition of the notion of representability of a Sets-valued func-
tor in L, we deduce the following: The functor ΥM is representable in L, if and only
if there exists a classifying or truth values object Ω in L, viz. if and only if there
exists an isomorphism for each Boolean frame B in B, that is a natural isomorphism
as follows:

Υ
(
M(−)

) � R(Ω) := HomL
(
M(−),Ω

)
.

Proposition The Boolean frames modeled subobject functor ΥM of L is repre-
sentable in the category of quantum event algebras L, if and only if the evaluation of
the unit of the Boolean frames-quantum adjunction at ΥM restricted to a functor of
Boolean localizations of L for every L in L is an isomorphism.

Proof The counit of the Boolean frames-quantum adjunction, for each L in L, is

εL : LR(L) → L.

The counit evaluated at L, viz. εL, is an isomorphism if it is restricted to a functor of
Boolean localizations of L. For any presheaf P ∈ SetsBop

, the unit is defined as

δP : P ��
��
��
��
��
��
��
��
��

������������������ RLP.

It is easy to see that if we consider as P ∈ SetsBop

the subobject functor Υ (M(−)),
we obtain the following natural transformation:

δΥ (M(−)) : Υ (
M(−)

) → RLΥ
(
M(−)

)
, that is,

δΥ (M(−)) : Υ (
M(−)

) → HomL
(
M(−),LΥ (M(−)

)
.

Hence, by inspecting the unit δΥ (M(−)) evaluated at Υ (M(−)), we conclude that the
Boolean frames modeled subobject functor becomes representable in L if and only
if, given that the counit εL for every L in L is an isomorphism, the unit δΥ (M(−)) is
also an isomorphism. Thus, ΥM becomes representable in L if and only if the unit
δΥ (M(−)) restricted to a functor of Boolean localizations of L, called the localized
unit at ΥM, is an isomorphism.

Proposition If the evaluation of the localized unit at ΥM is an isomorphism, then the
quantum truth values algebra Ω is given by the colimit (inductive limit) taken in the
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category of elements of the Boolean frames modeled subobject functor ΥM, according
to:

Ω := LΥ
(
M(−)

) = Colim

{∫
(
Υ

(
M(−)

)
,B

) −→ B M
��
��
��
��
��
��
��
��
��

������������������ L
}

Proof We may prove this proposition immediately by noticing that if the unit
δΥ (M(−)) is an isomorphism restricted to a functor of Boolean localizations of L for
every L in L, then the quantum truth values algebra Ω is constructed by application
of the left adjoint functor of the Boolean frames-quantum adjunction on the localized
unit δΥ (M(−)), viz.:

Ω := LΥ
(
M(−)

)
.

This is actually the case because

Ω := LΥ
(
M(−)

) � L
[
RLΥ

(
M(−)

)] � LRΩ

is precisely an expression of the counit isomorphism for the quantum event alge-
bra Ω .

As a corollary, we obtain that if the evaluation of the localized unit at ΥM restricted
to a functor of Boolean localizations of L for every L in L is an isomorphism, then the
following diagram is a classifying pullback square in L for each quantum algebraic
homomorphism

[δΥ (M(B))]λ : M(B) → LΥ
(
M(−)

) := Ω

from a Boolean domain modeled object M(B), such that λ is a subobject of M(B):

Dom(λ)
!

��
��
��
��
��
��
��
��
��

������������������ 1

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

λ

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

T

M(B)
[δΥ (M(B))]λ

��
��
��
��
��
��
��
��
��

������������������ LΥ (M(−)) := Ω

2.4 Tensor Product Representation of Quantum Truth Values

From the preceding we have concluded that if the evaluation of the localized unit
at ΥM is an isomorphism, then the subobject functor Sub : Lop → Sets of L is rep-
resentable in L by Ω := LΥ (M(−)) and L is endowed with a subobject classifier
defined by a universal monic quantum homomorphism, T := True : 1 ↪→ Ω . It is
important now to provide an explicit representation of the quantum truth values.

Proposition The elements of the quantum truth values algebra Ω := LΥ (M(−)) are
equivalence classes represented in tensor product form as follows:

[δΥ (M(B))]λ(b) := Δλ(b) = λ ⊗ b,
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where

[λ ∗ v] ⊗ b́ = λ ⊗ v(b́), λ ∈ Υ
(
M(B)

)
, b́ ∈ M(B́), v : B́ → B,v(b́) = b,

and [δΥ (M(B))]λ := Δλ denotes a local Boolean cover of Ω in the Boolean localiza-
tion functor [δΥ (M(−))](−) of Ω using the unit isomorphism.

Proof The quantum truth values object Ω is given by the colimit in the category of
elements of the Boolean frames modeled subobject functor, viz.:

Ω := LΥ
(
M(−)

) = Colim

{∫
(
Υ

(
M(−)

)
,B

) −→ B M
��
��
��
��
��
��
��
��
��

������������������ L
}

where the category of elements of Υ (M(−)) is denoted by
∫
(Υ (M(−)),B). Its

objects are all pairs (B,λ), where λ is a subobject of M(B), that is a monic
quantum homomorphism in M(B). The morphisms of the category of elements of
Υ (M(−)) are given by the arrows (B́, λ́) ��

��
��
��
��
��
��
��
��

������������������ (B,λ), namely they are those mor-
phisms v : B́ ��

��
��
��
��
��
��
��
��

������������������ B of B for which λ ∗ v = λ́, where λ ∗ v denotes the pullback of
the subobject λ of M(B) along v and λ́ is a subobject of M(B́).

The colimit in the category of elements of the Boolean frames modeled subobject
functor can be equivalently represented as a coequalizer of coproduct using standard
category-theoretic arguments (Appendix A.2):

∐
v:B́→B

M(B́)
ζ

��
��
��
��
��
��
��
��
��

������������������

��
��
��
��
��
��
��
��
��

������������������

η

∐
(B,λ)M(B)

χ
��
��
��
��
��
��
��
��
��

������������������ LΥ (M(−)) = Ω

where the second coproduct is over all the pairs (B,λ) with λ ∈ Υ (M(B)) of the cat-
egory of elements, while the first coproduct is over all the maps v : (B́, λ́) ��

��
��
��
��
��
��
��
��

������������������ (B,λ)

of that category, so that v : B́ ��
��
��
��
��
��
��
��
��

������������������ B and the condition λ ∗ u = λ́ is satisfied.
First, we may interpret the above representation of the colimit in the category of

elements of the Boolean frames modeled subobject functor in the category Sets. In
this case, the coproduct

∐
(B,λ)M(B) is a coproduct of sets, which is equivalent to

the product Υ (M(B)) × M(B) for B in B. The coequalizer is thus the definition of
the tensor product Υ (M(−))⊗BM of the set valued functors:

Υ
(
M(−)

) : Bop
��
��
��
��
��
��
��
��
��

������������������ Sets, M : B ��
��
��
��
��
��
��
��
��

������������������ Sets

∐
B,B́

Υ
(
M(B)

) × Hom(B́,B) × M(B́)
ζ

��
��
��
��
��
��
��
��
��

������������������

��
��
��
��
��
��
��
��
��

������������������

η

ζ
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��
��
��
��

������������������

��
��
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��
��
��
��
��
��

������������������

η

∐
BΥ (M(B)) × M(B)

χ
��
��
��
��
��
��
��
��
��

������������������ Υ
(
M(−)

)⊗BM

where the functor Υ (M(−)) is considered as a right B-module and the functor M as
a left B-module, in complete analogy with the definition of the tensor product of a
right B-module with a left B-module over a ring of coefficients B. We call this the
functorial tensor product decomposition of the colimit in the category of elements of
the Boolean frames modeled subobject functor and we make use of the tensor notation
in the sequel.
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According to the preceding diagram, for elements λ ∈ Υ (M(B)), v : B́ → B and
q́ ∈ M(B́) the following equations hold:

ζ(λ, v, q́) = (λ ∗ v, q́), η(λ, v, q́) = (
λ,v(q́)

)

symmetric in Υ (M(−)) and M. Hence the elements of the set Υ (M(−))⊗BM are all
of the form χ(λ, q). This element can be written in tensor product form as follows:

χ(λ, q) = λ ⊗ q, λ ∈ Υ
(
M(B)

)
, q ∈ M(B).

Thus, if we take into account the definitions of ζ and η above, we obtain:

[λ ∗ v] ⊗ q́ = λ ⊗ v(q́), λ ∈ Υ
(
M(B)

)
, q́ ∈ M(B́), v : B́ ��

��
��
��
��
��
��
��
��

������������������ B.

We conclude that the set Υ (M(−))⊗BM is actually the quotient of the set⊔
BΥ (M(B)) × M(B) by the equivalence relation generated by the above equa-

tions. Furthermore, if we define λ ∗ v = λ́, v(q́) = q , where λ́ is a subobject of M(B́)

and q ∈ M(B), we obtain the equations:

λ́ ⊗ q́ = λ ⊗ q.

Moreover, since pullbacks exist in L, we may consider the arrows h : M(D) → M(B)

and h́ : M(D) → M(B́) and the following pullback diagram in L:

M(D)
h

��
��
��
��
��
��
��
��
��

������������������ M(B)

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

h́

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

M(B́) ��
��
��
��
��
��
��
��
��

������������������ L

such that the following relations are satisfied: h(d) = q , h́(d) = q́ and λ ∗ h = λ́ ∗ h́.
Then, we obtain:

λ ⊗ q = λ ⊗ h(d) = [λ ∗ h] ⊗ d = [λ́ ∗ h́] ⊗ d = λ́ ⊗ h́(d) = λ́ ⊗ q́.

We may further define,

λ ∗ h = λ́ ∗ h́ = τ,

where τ is a subobject of M(D). Then, it is obvious that:

λ ⊗ q = τ ⊗ d

λ́ ⊗ q́ = τ ⊗ d.

It is then evident that we may define a partial order on the set Υ (M(−))⊗B M as
follows:

λ ⊗ b ≤ ρ ⊗ c
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if and only if there exist quantum algebraic homomorphisms β : M(D) → M(B) and
γ : M(D) → M(C), and some d1, d2 in M(D), such that: β(d1) = b, γ (d2) = c, and
λ ∗ β = ρ ∗ γ = τ . Thus, we obtain:

λ ⊗ b = τ ⊗ d1

ρ ⊗ c = τ ⊗ d2.

We conclude that:

λ ⊗ b ≤ ρ ⊗ c

if and only if

τ ⊗ d1 ≤ τ ⊗ d2 ⇐⇒ d1 ≤ d2.

The set Υ (M(−))⊗B M may be further endowed with a maximal element which
admits the following presentations:

1 = τ ⊗ 1 := true ∀τ ∈ Υ
(
M(D)

)

1 = idM(B) ⊗ b := true ∀b ∈ M(B),

and an orthocomplementation operator,

[τ ⊗ d]� = τ ⊗ d�.

Then, it is easy to verify that the set Ω = Υ (M(−))⊗B M endowed with the pre-
scribed operations is actually a quantum event algebra, for every Boolean event
algebra B in B. Consequently, the elements of the quantum truth values algebra
Ω = Υ (M(−))⊗B M are equivalence classes represented in tensor product form as
follows:

[δΥ (M(B))]λ(b) := Δλ(b) = λ ⊗ b,

where,

[λ ∗ v] ⊗ b́ = λ ⊗ v(b́), λ ∈ Υ
(
M(B)

)
, b́ ∈ M(B́), v : B́ → B,v(b́) = b,

and [δΥ (M(B))]λ := Δλ denotes a local Boolean cover of Ω in the Boolean localiza-
tion functor [δΥ (M(−))](−) of Ω using the unit isomorphism.

Corollary (Criterion of Truth) The criterion of truth for the category of quantum
event algebras L with respect to a functor of Boolean localizations is the following:

[δΥ (M(B))]λ(b) := Δλ(b) = λ ⊗ b = true iff b ∈ Image(λ),

where b may be thought of as representing the element (e.g., projection operator) that
identifies a corresponding quantum proposition p in the context of M(B).
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3 Physical Interpretation

We have shown explicitly that the category of quantum event algebras L has a
quantum truth values object Ω , which is defined by the colimit (inductive limit)
in the category of elements of the Boolean frames modeled subobject functor, viz.
Ω = Υ (M(−))⊗B M. To recapitulate, the truth values are equivalence classes rep-
resented in tensor product form as follows:

Δλ(b) = λ ⊗ b,

where

[λ ∗ v] ⊗ b́ = λ ⊗ v(b́), λ ∈ Υ
(
M(B)

)
, b́ ∈ M(B́), v : B́ → B,v(b́) = b,

and Δλ denotes a local Boolean cover of Ω in the Boolean localization functor Δ(−)

of Ω using the unit isomorphism. Thus, we have proved that truth-value assignment
in quantum mechanics is localized with respect to equivalence classes of compatible
Boolean frames belonging to a Boolean localization functor of a quantum event alge-
bra. We require that a Boolean localization functor of L in L is closed with respect to
Boolean covers, viz. it contains all Boolean frames covering L and satisfy the com-
patibility conditions. In this way, the quantum value true (equivalence class) used for
the evaluation of quantum propositions is characterized by:

τ ⊗ 1 := true ∀τ ∈ Υ
(
M(D)

)

idM(B) ⊗ b := true ∀b ∈ M(B)

Δλ(b) = λ ⊗ b = true iff b ∈ Image(λ), ∀λ ∈ Υ
(
M(B)

)
.

The classifying quantum event algebra Ω in L plays a role similar to the role played
by the two-valued Boolean algebra 2 := {0,1} in characterizing the logic of proposi-
tions referring to the behavior of classical systems. Thus, in the quantum case, sub-
objects of a quantum event algebra should be characterized in terms of characteristic
functions, which take values not in 2, but precisely in the truth values object Ω in L.
Let us explain the functionality of the quantum truth values object Ω according to
the following diagram:

Dom(l ∗ e) ��
��
��
��
��
��
��
��
��

������������������ K

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

l ∗ e = λ

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

l

M(B)
e

��
��
��
��
��
��
��
��
��

������������������ L

where l : K ↪→ L is a subobject of a quantum event algebra L, e : M(B) → L is
a Boolean cover of L in a Boolean localization functor of L, and l ∗ e = λ is the
pullback of l along e, that is the subobject λ of M(B). According to the truth-value
criterion, the characteristic function of the subobject l : K ↪→ L of L is specified as an
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equivalence class of pullbacks of the subobject l along its restrictions on all Boolean
covers in a Boolean localization functor of L. For each Boolean cover M(B) of L

we have that (l ∗ e) ⊗ b = λ ⊗ b = true if and only if b belongs to the Image(λ), for
all λ in Υ (M(B)). Thus, for each Boolean cover M(B) of L, the value 1 = true in
Ω is assigned to all those b in M(B) belonging to the restriction of the subobject
l : K ↪→ L of L with respect to the subobject λ of M(B), for all λ. In particular, if the
Boolean covers are monic morphisms, each pullback is expressed as the intersection
of the subobject l with the corresponding cover in the Boolean localization functor.

Conceptually, every quantum event or proposition of a quantum event algebra L

is contextualized with respect to all Boolean frames M(B) belonging to a Boolean
localization functor of L by means of pulling back or restricting. In this way, a quan-
tum proposition refers to an equivalence class of all its restricted propositions with
respect to all Boolean frames M(B) belonging to a Boolean localization functor of L.
Note that all restricted propositions are logically compatible since they belong to a
Boolean localization functor of L. With respect to each such contextualization we
obtain a contextual truth valuation of the restricted proposition associated with the
corresponding frame M(B) specified by the truth rule λ ⊗ b = true if and only if b

belongs to the Image(λ), holding for every subobject λ of M(B), where b represents
the restricted quantum proposition with respect to the Boolean frame M(B). The im-
portant thing to emphasize is that all these contextual truth valuations of some quan-
tum proposition are appropriately related to each other by the formation of equiv-
alence classes gluing together all its restrictions with respect to all Boolean frames
M(B) belonging to a Boolean localization functor. This, in effect, is established by
the quantum truth value true specification constraints in Ω determining a complete
description of states of affairs and defined by: τ ⊗ 1 := true for all τ ∈ Υ (M(B)) and
idM(B) ⊗ b := true for all b ∈ M(B) and for all Boolean frame domains M(B) in a
Boolean localization functor.

Let us now apply the above truth valuation scheme to a typical measurement situ-
ation referring to a quantum system prepared to pass through a slit, where a counter
has been set to record by clicking or not the passage through the slit. If we denote a
Boolean domain preparation context by M(B), containing both the measuring appa-
ratus and the system observed, then we may form the propositions:

〈c〉 := [counter clicks]
〈d〉 := [system passes through the slit]
〈c ⇒ d〉 := 〈b〉 := [counter clicks ⇒ system passes through the slit].
Notice that the proposition 〈b〉 is a compound proposition referring to the cou-

pling of the measuring apparatus with the quantum system in the Boolean context
M(B). The proposition 〈c ⇒ d〉 := 〈b〉 is assigned the value true in Ω , expressing
a complete description of the state of affairs. More precisely with respect to the log-
ical frame of the Boolean context M(B), or more concretely with respect to idM(B),
we have that idM(B) ⊗ b = true. We notice that the above truth-value assignment
does not suffice in order to infer that the proposition 〈d〉 is true. In order to infer the
above, we need to use the Boolean context M(C) which contains only the measur-
ing apparatus, which is a subobject of the preparatory Boolean context M(B), viz.
λ : M(C) ↪→ M(B). Then, we obtain that: idM(C) ⊗ c = true and λ ⊗ ξ = true if and
only if ξ belongs to the Image(λ) in M(B). The Boolean contexts M(C) and M(B)
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induce the formation of a Boolean localization functor for the evaluation of 〈d〉 and
thus they are glued compatibly together. Hence, we deduce that λ⊗ b = true because
b belongs to the Image(λ) in M(B). In particular b in M(B) is the image of c in
M(C) ↪→ M(B) and the truth of 〈d〉 is indirectly inferred by the equivalence class,
which is induced by the ideal of compatible Boolean covers M(C) and M(B), and
defined by:

idM(C) ⊗ c = λ ⊗ b = idM(B) ⊗ b = true.

4 Conclusions

In the present study we considered a category-theoretic framework for the interpreta-
tion of quantum event structures and their logical semantics. The scheme of interpre-
tation is based on the existence of the Boolean frames-quantum adjunction, namely,
a categorical adjunction between presheaves of Boolean event algebras and quantum
event algebras. On the basis of this adjoint correspondence, we proved the existence
of an object of truth values in the category of quantum event algebras, characterized
as subobject classifier. The conceptual essence of this classifying object Ω is associ-
ated with the fact that Ω constitutes the appropriate tool for the valuation of propo-
sitions describing the behavior of a quantum system, in analogous correspondence
with the classical case, where the two-valued Boolean object is used. We explicitly
constructed the quantum object of truth values in tensor product form, and further-
more, demonstrated its functioning in a typical measurement situation. In addition,
we provided a criterion of truth valuation that corresponds to the truth-value true in
the quantum domain.

We would like to conclude our paper by remarking on the conceptual merits of the
suggested approach. The attribution of truth values to quantum mechanical propo-
sitions arising out of the preceding category-theoretic scheme bears the following
consequences that seem to be intuitively satisfactory. Firstly, it avoids the semantic
ambiguity with respect to truth-value assignment to propositions that is inherent in
conventional quantum mechanics, in the following sense: all propositions that are
certainly true or certainly false (assigned probability value 1 or 0) according to con-
ventional quantum mechanics are also certainly true or certainly false according to
the category-theoretic approach. The remaining propositions (assigned probability
value different from 1 and 0) are semantically undecidable according to the former
interpretation (they are neither true nor false), while they have determinate truth val-
ues according to the latter. These values, however, depend not only on the state of the
physical system that is considered but also on the context through which the system
is investigated, thus capturing the endemic feature of quantum contextuality. Indeed,
the existence of the subobject classifier Ω leads naturally to contextual truth-value as-
signments to quantum mechanical propositions, where each proposition pertaining to
a physical system under investigation acquires a determinate truth value with respect
to the context defined by the corresponding observable to be measured.

Secondly, the quantum truth values object Ω enables not only a determinate truth
valuation in each fixed experimental context, but in addition, it amalgamates inter-
nally all compatible truth valuations with respect to all Boolean frames belonging
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to some Boolean localization functor of a quantum event algebra. The amalgama-
tion is expressed by the formation of equivalence classes, which are represented in
tensor product form, via the truth value true in Ω determining a complete descrip-
tion of states of affairs with respect to the considered Boolean localization functor.
In this way, truth-value assignment in quantum mechanics is topologically localized
and consequently contextualized with respect to tensor product equivalence classes
formed among compatible Boolean frames belonging to a Boolean localization func-
tor of a quantum event algebra. Conceptually, every quantum event or proposition of
a quantum event algebra L is contextualized with respect to all Boolean frames M(B)

belonging to a Boolean localization functor of L. Thus, the truth of a quantum propo-
sition is specified by the tensor product equivalence class of the truth value true in
Ω interconnecting together all contextual truth valuations of all its restricted propo-
sitions with respect to all Boolean frames M(B) belonging to a Boolean localization
functor of L.

A particularly interesting application of the proposed scheme refers to the follow-
ing case involving partially overlapping, incompatible, Boolean experimental con-
texts: Let A and E be two incompatible observables of a quantum system in a given
state sharing one or more projection operators in their corresponding spectral de-
compositions. Let M(BA) and M(BE) be the corresponding Boolean subalgebras
in the system’s Hilbert space quantum event structure associated to the observables
A and E, respectively. From a physical perspective, the quantum truth values ob-
ject Ω takes into account the whole set of possible ways of assigning truth values
to the propositions associated with the projectors of the spectral decomposition of
a given observable. Then, the subobject classifier Ω makes it possible to refer, at
least partially, to the truth valuation of propositions represented by projectors per-
taining to incompatible observables with respect to the initially chosen, without fac-
ing a Kochen-Specker contradiction, in the following sense: once an observable is
selected to be measured, say A, and thus the associated context of measurement is
fixed, we may consistently refer to Boolean truth valuations of observable E, as far
as its common projectors with A are concerned, by taking into account the Boolean
information that M(BA) ∩ M(BE) has about M(BE). It is important to realize that in
this framework no Kochen-Specker contradiction arises, since these truth valuations
are considered from a fixed context. Furthermore, the sheaf theoretical representation
of a quantum algebra of events, in terms of Boolean localization functors, takes pre-
cisely into account the compatibility conditions of these Boolean subalgebras with
respect to their intersection in such a way as to leave invariant the amount of in-
formation contained in a quantum system. As indicated in Sect. 2.2, this underlying
invariance property is satisfied if and only if the counit of the adjunction, restricted to
those Boolean localization functors, is an isomorphism, that is, structure-preserving,
1-1 and onto. Inevitably, this state of affairs allows one to formalize the extent to
which we can consider as objective properties of a physical system, and hence, at-
tribute well-defined truth values to their corresponding propositions, those properties
represented by projectors pertaining to the overlaps of different Boolean covers with-
out facing no-go theorems. Still, one may ask, what about probabilities? What may
be the probabilistic relations between events pertaining to different Boolean covers?
Importantly, by analogous reasoning, within this framework one is able to refer con-
sistently to the conditional probability of one quantum event, say ej , given another,
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ai , when working in two different, partially overlapping, Boolean contexts. On this
approach, to ask what the probability is that a measurement of observable E will
yield result ej , given that an event ai has occurred, is to ask for what value of ω the
statement p(ej | ai) = ω is true, provided that a measurement of A has already taken
place. Since p is a probability measure defined on the system’s quantum event struc-
ture, obeying the requirements of Gleason’s theorem, and hence representable by a
quantum probabilistic state (a density operator) D on the system’s Hilbert space,
the conditional probability p(ej | ai) is given by Lüders’ conditionalization rule,
p(ej | ai) = Tr(PADPAPE)/Tr(DPA), where PA and PE are the projection oper-
ators onto the associated one-dimensional subspaces of the system’s Hilbert space
corresponding to events ai and ej , respectively. It may be worth remarking in pass-
ing that on the so-called Copenhagen approach of Bohr and Heisenberg there are no
available means of dealing with sequences of events; pn(ej | ai) will always be zero
if A and E are incompatible, even if they share certain projections as in the previ-
ous case, since there is no single experimental arrangement that may correspond to
the two Boolean subalgebras M(BA) and M(BE) generated by the associated magni-
tudes.

Finally, given the preceding conceptual and technical advantages, it would be
wrong to assume that they are achievable at the expense of resorting to anti-realist
approaches with respect to truth-semantics, as, for instance, identifying truth with a
positivist verificationist position. On the contrary, the proposed account of truth con-
forms to a realist conception of truth, which, moreover, is compatible with contempo-
rary physics. The account of truth-value assignment suggested here essentially denies
that there can be a “God’s-eye view” or an absolute Archimedean standpoint from
which to state the totality of facts of nature. For, an elementary quantum mechanical
proposition is not true or false simpliciter, independently of a particular context of
reference, as in the case of classical mechanics. On account of the Kochen-Specker
theorem, there simply does not exist, within a quantum mechanical discourse, a con-
sistent binary assignment of determinately true or determinately false propositions
independent of the appeal to a context. Propositional content seems to be linked to a
context. This connection between referential context and propositional content means
that a descriptive elementary proposition in the domain of quantum mechanics is, in
a sense, incomplete unless it is accompanied by the specified conditions of an experi-
mental context under which the proposition becomes effectively truth-valued (see, in
addition, [13]). Hence, from the category theoretical perspective of the present paper,
the reference to a Boolean preparatory experimental context should not be viewed pri-
marily as offering the evidential or verificationist basis for the truth of a proposition; it
does not aim to equate truth to verification. Nor should it be associated with practices
of instrumentalism, operationalism, and the like; it does not aim to reduce theoretical
terms to products of operational procedures. It rather provides the appropriate condi-
tions under which it is possible for a proposition to receive consistently a truth value.
Whereas in classical mechanics the conditions under which elementary propositions
are claimed to be true or false are determinate independently of the context in which
they are expressed, in contradistinction, the truth-conditions of quantum mechanical
propositions are determinate within a context. In other words, the specification of the
context is part and parcel of the truth-conditions that should obtain for a proposition
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in order the latter to be invested with a determinate (albeit unknown) truth value.
Otherwise, the proposition is, in general, semantically undecidable. Thus, the specifi-
cation of the context provides the necessary conditions whereby bivalent assignment
of truth values to quantum mechanical propositions is in principle applicable. This
marks the fundamental difference between conditions for well-defined attribution of
truth values to propositions and mere verification conditions. In the quantum descrip-
tion, therefore, the specification of the experimental context forms a pre-condition of
quantum physical experience, which is necessary if quantum mechanics is to grasp
empirical reality at all. In this respect, the specification of the context constitutes a
methodological act preceding any empirical truth in the quantum domain and making
it possible.
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Appendix

A.1 Comparison With Other Categorial Approaches

It is instructive to attempt a brief comparison of our topos-theoretic representation
scheme with other categorial and topos-theoretic approaches. The current interest
in applying methods of topos theory in the logical foundations of quantum physics
was initiated by the work of Isham and Butterfield [9, 10], who provided a topos-
theoretic reformulation of the Kochen-Specker theorem. For this purpose, they con-
sidered the partially ordered set of commutative von Neumann subalgebras of the
non-commutative algebra of all bounded operators on a quantum Hilbert space as a
“category of contexts” where the only arrows are inclusions. This “category of con-
texts” served as a base category for defining the topos of presheaves of sets over the
poset of commutative subalgebras. The reformulation of the Kochen-Specker the-
orem took place by defining a special presheaf, called the spectral presheaf, and
showing that the latter has no global sections. We note that the action of the spec-
tral presheaf on each commutative von Neumann subalgebra gives its maximal ideal
spectrum (Gelfand spectrum). Alternatively, the former “category of contexts” may
be replaced by the poset of all Boolean subalgebras of the non-Boolean lattice of
projection operators on a quantum Hilbert space. Similarly, the action of the spectral
presheaf in this case (called the dual presheaf) on each Boolean subalgebra gives its
Stone spectrum (that is the set of all its homomorphisms to the 2-valued Boolean al-
gebra {0,1}). In this case, the statement of the Kochen-Specker theorem is equivalent
to the assertion that the dual presheaf has no global sections.

This topos-theoretic research initiative has been extended, elaborated and devel-
oped further by Döring and Isham (DI) (e.g., [6] and references therein). The central
principle of their work is that the construction of a theory of physics is equivalent to
finding a representation in “a topos of a certain formal language” that is attached to
the system. In particular, regarding quantum theory, their proposal is to use the formal
language associated with the topos of presheaves of sets over the poset of commuta-
tive von Neumann subalgebras (or the poset of Boolean subalgebras) and mimic the
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classical topos, set-theoretic formulation of physical theories. This analogy is pursued
up to the point of constructing a topos-theoretic framework of quantum kinematics
(dynamical ideas have not yet been addressed in their framework). This difficult task
required the following: (i) The association of physical quantities with morphisms in
the topos of presheaves from a “state-object” to a “quantity-value” object; (ii) the
definition of an appropriate “object of truth-values” in this topos, and iii, the con-
struction of the so called “daseinisation map” for projections (and self-adjoint oper-
ators), which is used as a translation mechanism from the Hilbert space formalism
to the topos formalism. Regarding (i) the “state object” is identified as the spectral
presheaf, while regarding (ii) the “object of truth-values” in the topos of presheaves is
identified with the subobject classifier, which assigns to each context the Heyting al-
gebra of all sieves on that context. Regarding (iii) the “daseinisation map” transforms
a projection operator to a clopen subobject of the spectral presheaf by approximat-
ing it, for each context of the base poset, by the smallest projection greater than or
equal to it. In this way, propositions are represented by the clopen subobjects of the
spectral presheaf (a Heyting algebra representation). At a next stage, the procedure of
daseinisation is extended to self-adjoint operators by considering their spectral fami-
lies and approximating with respect to the spectral order. This method comes in two
versions depending on the procedure of approximating self-adjoint operators from
above or from below in the spectral order. If for each context, the best approxima-
tions to a self-adjoint operator from above and below become evaluated at a state, they
define an interval of real numbers, which is interpreted as the unsharp value of this
operator at the selected context in that state. By essentially building on this insight,
(DI) construct a “quantity-value” object, which is a presheaf different from the real
number object of the (DI) topos of presheaves. In this way, the daseinisation of a self-
adjoint operator is described as a natural transformation from the “state-object” to
the “quantity-value” object. In classical physics, for every state of a system a propo-
sition acquires a definite truth value (true/false) or equivalently each state defines a
homomorphism from the Boolean algebra of propositions to the two-valued Boolean
algebra. In the (DI) case, a state is not represented by a global section of the spectral
presheaf (“state object”) due to the topos version of Kochen-Specker’s theorem, but
by a probability measure on the spectral presheaf. This forces (DI) to define the truth
value of a proposition at a state as the sieve (downwards closed set) of contexts for
which the probability of its daseinisation at each such context is 1.

Let us now attempt a brief comparison of our approach with the (DI) approach.
Initially, it is useful to focus on the different conceptual aspects involved in the uti-
lization of topos-theoretic ideas in the foundations of quantum physics. (DI) use the
notion of topos as a semantical framework of intuitionistic propositional or predi-
cate logic in its function to serve as a linguistic representation (that is the topos is
“a topos of a certain formal language”) attached to a system. Precise criteria of this
attachment are not provided, which would justify the reasons of adherence to an in-
tuitionistic framework. Rather, the scheme is built on the strong analogy provided by
the notion of an “elementary topos” (that is the logical embodiment of the topos con-
cept) as a generalized model of set theory being equipped with a subobject classifier
(that is a distributive Heyting algebra classifying object, which forces the intuitionis-
tic semantics) generalizing the classifying function of the Boolean two-valued object
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in the universe of sets. Behind this analogy there is the philosophical claim of “neo-
realism”. This is also conceived in a purely logical manner by (DI), on the basis of
the claim that a new form of realism in physics is restored if both the propositional
structure and the truth values structure of the “linguistic representation” of a physical
system are distributive and “almost Boolean”. In comparison, our approach uses the
notion of topos in the sense of a generalized geometric environment, which makes
it possible to constitute the structural information content of “complex objects” (like
quantum event algebras) from the non-trivial localization properties of observables,
which are used in order to probe (or technically cover) these “complex objects”. More
precisely, the proposed crucial notion of topos in physics is the one associated with
the conceptual framework of Grothendieck topoi. Every Grothendieck topos can be
represented as a category of sheaves for some Grothendieck topology on a base cate-
gory of “contexts”. Moreover, every Grothendieck topos is also an elementary topos,
and thus equipped with an internal classifying object of truth values. Thus, in our
perspective the “linguistic representation” is a consequence of the above mathemat-
ical fact and not the ultimate aim of formulating a physical theory in elementary
topos logical terms in order to restore some form of traditional realism. (DI) avoid
any reference to the notion of observables, mainly because of the possible instrumen-
talist connotations of this term, and use instead the term “physical quantity”. Still
observables denote physical quantities that, in principle, can be measured and the
constitution of quantum observables from interconnected families of local Boolean
observables (with respect to an appropriate Grothendieck topology) reveals the non-
trivial (unsharp) localization properties in the quantum realm. Thus, it is precisely
these non-trivial localization properties that necessitate the constitution of quantum
objects via factorization through a Grothendieck topos (a “superstructure of measure-
ment”, viz. a “category of sheaves” in Grothendieck’s words) over a base category of
Boolean localizing measurement contexts. In the topos scheme of (DI), which fol-
lows an inverse conceptual direction by attempting to reduce “quantum objects” (for
instance self-adjoint operators) to “objects or arrows in a topos” (for instance a topos-
conceived physical quantity), instead of constituting or inducing “quantum objects”
by factorization through “objects or arrows in a topos” reflecting Boolean localiza-
tion properties, the localization problem is not avoided but appears in another guise in
the elaborate construction of the “quantity-value” object. It is important to stress that
our conception of the functional role of topos in quantum mechanics is still realist (al-
though in a different sense in comparison to “neo-realism”) since the consideration of
Boolean localizing contexts forms a pre-condition of quantum physical experience,
as we have explained previously.

The above brings into focus two other important issues in the attempted compari-
son between these two topos approaches to the foundations of quantum physics. The
first refers to the role of “Boolean contexts” or “commutative contexts” as the objects
of the base category and the other refers to the idea of translation between “quantum
objects” and “topos objects”. Let us start with the comparison referring to the issue
of “contexts”. The idea of a “context” describes an algebra of commuting physical
quantities, or equivalently, a complete Boolean algebra of commuting projection op-
erators (the idempotent elements of a “commutative context”). In the framework of
(DI) the contexts are partially ordered by inclusion forming a poset which serves as
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the base category of presheaves. The contexts are called heuristically “local” since no
topology is defined on the base category. Note that since the base category is a poset
the consideration of the Alexandroff topology of upper or lower sets in the order does
not make any difference at the topos level since every presheaf is a sheaf for this
topology on a poset. In any case, since they consider a topos as “a topos of a certain
formal language” attached to a quantum system, the consideration of the topos of
presheaves over this partial order, being naturally equipped with a subobject classi-
fier (the Heyting algebra of all sieves at each context), is adequate for their purpose
to provide truth values of propositions (after the procedure of daseinisation) in an
“almost Boolean” truth values object in this topos. Their intention is to use all these
partially ordered “local” contexts simultaneously in order to capture the information
of “quantum objects” (not homomorphically) in terms of truth valuations in the sub-
object classifier. A natural question arising in this setting is if the orthomodular lattice
of all projections in a global non-commutative von Neumann algebra is determined
by the partially ordered set of its Boolean subalgebras of projections, that is, by the
poset of its “Boolean contexts”. This is not the case since at least the inclusions of
the “Boolean contexts” together with the order relation should be taken into account.
Still, it seems that this does not appear as a problem in the topos approach of (DI),
because they are only interested in a non-homomorphic translation of projections
into their daseinised approximations with respect to the partially ordered “contexts”,
followed by another non-homomorphic mapping (of Heyting algebras) into the sub-
object classifier. In comparison, in our approach the specification of the base category
of “Boolean contexts” plays a major role and is different from a poset. Initially, we
define as a base category the category of complete Boolean algebras with morphisms
all the corresponding homomorphisms (the technicality of considering σ -Boolean al-
gebras is forced upon the requirement of having a well defined theory of observables
according to standard measure-theoretic arguments). The choice of the category of
complete Boolean algebras as a base category is justified by the fact that given any set
of pairwise commuting self-adjoint operators, there exists a complete Boolean alge-
bra which contains all the projection operators generating the spectral decomposition
of these operators. Thus, complete Boolean algebras play the functional role of logi-
cal frames relative to which we are able to coordinatize the measurements of the ob-
servables corresponding to these self-adjoint operators. The semantic connotation of
“Boolean contexts” as “Boolean logical frames” for covering the global non-Boolean
lattice of projections poses the necessity to make precise the meaning of what is “lo-
cal” in the base category. For this purpose, we define an appropriate Grothendieck
topology on the (opposite) category of complete Boolean algebras (the sub-canonical
topology of epimorphic families of Boolean covers), which boils down to the notion
of Boolean localization functors forming a partially ordered set by inclusion. The no-
tion of Boolean covers as probing frames of a quantum event algebra requires further
explanation for the aims of the comparison. For this reason we point out that the spec-
tral presheaf, the so called “state-object” of (DI) is different from our corresponding
spectral presheaf, which is called functor of Boolean frames of a quantum event al-
gebra. The (DI) spectral presheaf, at each “Boolean context” gives the set of Boolean
homomorphisms from that context to the two-valued context (the Stone spectrum of
the “Boolean context”). In our case, the functor of Boolean frames, at each “Boolean
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context” gives the set of quantum homomorphisms from the “modeled Boolean con-
text” (that is the quantum event algebra image of the “Boolean context” under the
action of the modeling functor) to a fixed quantum event algebra. These “modeled
Boolean contexts” are the generators of covering families of a quantum event alge-
bra, that is families of “Boolean covers” or “Boolean logical frames” of a quantum
event algebra localizing it. Thus, it is convenient to think of these “Boolean covers” in
terms of covering Boolean coordinate patches of a global quantum event algebra, so
that there might be many with the same image. Notice also that, in contradistinction
to the case where they are related only by inclusion, there may be many homomor-
phisms between each pair of them. Finally, instead of pairwise intersections we have
to look at their fibered products (which define the pullback compatibility conditions
for Boolean covers in some Boolean localization functor of a quantum event algebra).
The upshot of this difference boils down to the following consequences: First, the ho-
momorphism from a “modeled Boolean context” to some fixed quantum event alge-
bra always factors in a homomorphic way through the inductive limit (colimit) in the
category of elements of the functor of Boolean frames of the quantum event algebra.
Second, the functor of Boolean frames becomes a sheaf with respect to compatible
Boolean covering families in the defined topology (Boolean localization functors).
Third, by restriction to such Boolean localization functors, a quantum event algebra
can be represented isomorphically by the inductive limit in the category of elements
of its functor (sheaf) of Boolean frames. Fourth, the whole structural information of a
global quantum event algebra is constituted sheaf-theoretically (up to isomorphism)
and inversely preserved by this inductive limit construction (restricted to Boolean
covers in the topology). Fifth, the same idea can be implemented in an analogous
way for the categories of quantum observables and quantum probabilities by passage
to the corresponding slice categories of the base category of quantum event algebras.
Hence, there is no need to introduce separately notions of “quantity-value” objects
and “quasi-states”. Sixth, the Grothendieck topos of sheaves on the defined site is
the geometric localization environment via which it becomes possible to constitute
“quantum objects” contextually (from the local to the global level) by probing them
through interconnected families of Boolean frames. Seventh, by reflection of the lo-
calization topos the category of quantum event algebras itself becomes equipped with
a classifying object, which can be used for truth valuations of quantum propositions
in analogy to the classical case. Eighth, the exact analogue of the spectral logical
object in the localization topos assigns to each “modeled Boolean context” the set
of quantum homomorphisms from this context to the quantum classifying algebra
(instead of the Stone spectrum).

The final issue of our comparison refers to the idea of translation between “quan-
tum objects” and “topos objects”. In the (DI) framework the translation is imple-
mented from the “quantum side” to the “topos side” through the procedure of daseini-
sation of projectors (and self-adjoint operators). This is a procedure of order-theoretic
approximation of each projector in the global non-Boolean lattice (representing a
proposition about the value of a physical quantity) by some projector in each “clas-
sical context” of the base poset, such that all the “classical contexts” are taken into
account simultaneously. The order-theoretic approximation procedure may be con-
ducted either from above (outer daseinisation) or from below (inner daseinisation)
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with distinct physical interpretations. For example, in the outer case each approxi-
mating projector (with respect to a “classical context”) denotes the strongest conse-
quence in that context of the original projector. In a nutshell, (outer) daseinisation
produces an order embedding of the global non-distributive lattice of projections into
a distributive lattice (complete Heyting algebra of clopen subobjects of the spectral
presheaf), which does not preserve the conjunction and the negation operations of the
quantum lattice as well as the law of excluded middle. Conceptually, daseinisation
in its functional role as a translation from “quantum objects” to “topos objects” is
interpreted as a means to “bring-a-quantum-property-into-existence” (inspired from
Heidegger’s Dasein) by “hurling it into the collection of all possible classical snap-
shots of the world” in the words of (DI). In comparison, we think of the process
of translation between “quantum objects” and “topos objects” in a different way. The
key idea is the existence of a categorical adjunction (pair of adjoint functors) between
the topos of presheaves (over the base category of complete Boolean algebras) and the
category of quantum event algebras. The adjunction provides a bidirectional functo-
rial correlation between this topos and the category of quantum event algebras, where
the right adjoint is the functor of Boolean frames (of a quantum event algebra) and
the left adjoint is the inductive limit of an object in the topos (taken in the category of
its elements). Thus, in comparison to daseinisation, which translates (not homomor-
phically) a “quantum object” to a “topos object”, the adjunction is a bidirectional and
functorial translation mechanism of encoding and decoding information from “topos
objects” to “quantum objects” and inversely, by preserving the structural form of the
correlated categories. The crucial part of the adjunction is the construction of the left
adjoint, by means of which we obtain a homomorphism from the inductive limit of a
“topos object” to a “quantum object”. In particular, the counit of the adjunction, eval-
uated at a quantum event algebra, is a quantum homomorphism from the inductive
limit in the category of elements of the functor of Boolean frames to a quantum event
algebra, which can be made into a quantum isomorphism by restriction to a Boolean
localization functor. In this way, the global structural information of a quantum event
algebra can be approximated homomorphically or (in the latter case) completely con-
stituted (up to isomorphism) by means of gluing together the observable information
collected in all compatible Boolean frames in the form of appropriate equivalence
classes (by the inductive limit construction).

Moreover, the “Boolean frames-quantum adjunction” provides the key conceptual
and technical device to show that the category of quantum event algebras is equipped
with a classifying object, which should be used for the valuation of quantum propo-
sitions by analogy to the classical case, where the two-valued Boolean algebra plays
this role. For this purpose we use the unit of the adjunction evaluated at the subobject
functor (a “topos object”) and show that it becomes representable in the category of
quantum event algebras by a classifying object in this category (a “quantum object”),
which is again constructed by an inductive limit operation (in the category of ele-
ments of the subobject functor). Intuitively, this quantum classifying object contains
the information of equivalence classes of truth valuations with respect to all compat-
ible Boolean frames belonging to a Boolean localization functor of a quantum event
algebra. In comparison, the truth value object of (DI) is the subobject classifier in
their topos of presheaves over the poset of “classical contexts” (a “topos object”).
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In their case there does not exist a homomorphism (of Heyting algebras) from the
(clopen) subobjects of their spectral presheaf to the subobject classifier of this topos,
which would provide the analogy with the classical case. This is so because a state
is not represented by a global element of their spectral presheaf due to the Kochen-
Specker theorem, but by a probability measure on the spectral presheaf. Thus, the
truth value of a proposition (at a state) is identified with the downwards closed set of
“classical contexts” for which the probability of its daseinisation at each such context
is 1. Nevertheless, from an inverse viewpoint, the truth of a “daseinized proposition”
in a “classical context” does not convey any information about the truth of the origi-
nal quantum proposition. In comparison, in our approach the truth of a proposition in
a Boolean frame makes it equivalent to all other propositions in all Boolean frames
being compatible with it with respect to a Boolean localization functor of a quantum
event algebra by the explicit truth-value criterion.

Conclusively, in our approach the “Boolean frames-quantum adjunction” is a the-
oretical platform for probing the quantum domain of discourse via a localization
topos by: [I] Decoding the global information contained in quantum event structures
inductively via equivalence classes of partially compatible processes of localization
in Boolean logical frames realized as physical contexts for measurement of observ-
ables, and [II] classifying quantum information in terms of contextual truth valuations
with respect to these Boolean logical frames. We claim that the functioning of this
bidirectional translation platform is fundamental philosophically for a novel realist
understanding of the part-whole relation and the corresponding contextualist account
of truth suited to the quantum domain.

We continue our comparison by commenting briefly on a similar topos-theoretic
approach to that of Döring and Isham (DI), which has been developed by Heunen,
Landsman and Spitters (HLS) (e.g., [8] and references therein). The similarity is
based on the following facts: [I] They also use the notion of topos as a semanti-
cal framework of intuitionistic predicate logic in its function to serve as a linguistic
representation (that is the topos is “a topos of a certain formal language”) attached
to a quantum system. [II] The choice of the base category of their topos scheme is
closely related to the one by (DI), meaning that it is also a partially ordered set of
“classical contexts”, the essential difference being that they are not commutative von
Neumann algebras but more general star algebras over the complex numbers. Re-
garding these structural similarities, our comparison comments referring to the (DI)
scheme pertain to this scheme as well. Repeating concisely, the difference pertains
to the following: (i) The distinct notions of an elementary topos in comparison to a
Grothendieck localization topos (realized as a category of sheaves for an appropriate
Grothendieck topology) as a foundation to probe the content of a physical theory, and
(ii) the choice of the partial order relation among “classical contexts” as an adequate
base category to capture the complexity of quantum logic, in contradistinction to
the category of complete Boolean algebras and homomorphisms together with their
function as Boolean logical frames in quantum logic.

Notwithstanding the above similarities there are considerable differences between
the topos approaches of these two groups. They can be very concisely summarized as
follows: (i) The (HLS) topos approach uses a covariant functorial perspective, which
is based on the topos of co-presheaves on the partial order of “classical contexts”.
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(ii) The conceptual and philosophical underpinning of the topos scheme serves dif-
ferent purposes and is interpreted in distinctively different ways: in the (DI) case it
is interpreted as a framework of “neo-realism” in the sense of resembling classical
physics in an “almost Boolean” way, whereas in the (HLS) case it is interpreted as a
framework making precise Bohr’s “doctrine of classical concepts” invoking explic-
itly the notions of experiments, measurement and observables. This is also reflected
in the terminology (for example, (DI) speak of physical quantities, whereas (HLS)
speak of observables), and it is somehow strange to us that (HLS) also use the term
“daseinisation” of (DI) in order to describe the approximation procedure, although
the meaning of this term is at odds with Bohr’s doctrine. (iii) The essential point of
the (HLS) topos approach is that there exists an internal commutative star algebra
(or an internal Boolean algebra) within the topos of co-presheaves over the poset of
“classical contexts”, so their topos comes equipped together with an “internal com-
mutative algebraic object”, which is not the case in the (DI) approach.

For our comparison purposes, we focus on the aspect [iii] above, marking the basic
technical difference between the (HLS) and (DI) approaches in relation to ours. An
initial remark is that the “internal commutative algebraic object” is introduced in the
topos by means of a tautological covariant functor, which assigns to each object in
the poset of “classical contexts” itself, seen as a set. So, it is this tautological covari-
ant functor which serves as an “internal commutative algebraic object” in the topos
of (HLS). Then, the use of the constructive version of the Gelfand duality theorem
of Banaschewski and Mulvey [3], generalizing Gelfand duality internally in topoi,
allows (HLS) to define the internal Gelfand spectrum of this “internal commutative
algebraic object” in their topos, which is a frame (and thus a Heyting algebra in the
topos) to act as the topos intuitionistic logical surrogate of quantum logic. The pro-
cess of passing from a non-commutative star algebra to an internal commutative star
algebra via a tautological functor in the topos of covariant functors over the poset of
“classical contexts” is called “Bohrification” by (HLS). Now, the internal observables
are given by the self-adjoint elements in the “internal commutative algebraic object”
and the internal states by the linear functionals to the constant functor of complex
numbers in the topos. Moreover, there exists an internal complete Boolean algebra in
the topos formed by the idempotent internal observables. In a nutshell, (HLS) using
these “internal objects” define embeddings of the standard “quantum objects” into
“topos objects”, set up an analogous approximation procedure (inner daseinisation)
for projections (and self-adjoint elements), and manage to embed the standard quan-
tum logic into a “topos object” analogous to the “clopen subfunctors of the spectral
presheaf” of the (DI) approach, which is not an “internal Boolean algebra” “topos
object”. This is, similarly to the (DI) case, an order embedding to a Heyting algebra
object in a topos, which does not preserve disjunctions and the negation operator.
In comparison, in our approach we have not considered the existence of any anal-
ogous “internal Boolean algebra object” in our topos (which is different from the
topos of (HLS) both in terms of the base category and the fact that we use a topos of
(pre)sheaves and not a topos of co-presheaves). It is not clear if the existence of such
an “internal commutative object” has been somehow forced by the employment of a
tautological functor (together with the choice of the base category as a poset) or is a
more general phenomenon. At least (HLS) do not provide any other instance, except
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the tautological case, and do not make any further remark concerning this issue. In
the physical state of affairs, apart from the functionality of the “internal commuta-
tive object” in order to define observables and states internally in their topos—thus
bypassing the issues with the “quantity value object” and “quasi-states” in the (DI)
approach—they do not use an appropriate “internal Boolean algebra” “topos object”
for valuations of quantum propositions, and therefore such an internal object is not
relevant for logical classification internally in their topos. In our case, focusing on
the viewpoint of a topos as a Grothendieck localization topos of sheaves, we may
further make use of the notion of “Boolean localization” implied by a result of Barr
and Diaconescu [16], according to which for any Grothendieck topos of sheaves there
exists a Boolean cover, that is a geometric morphism from the topos of sheaves over
a complete Boolean algebra to this topos. This theorem, applied in our case, provides
also an adjunction between the topos of sheaves over a complete Boolean algebra
and the category of quantum event algebras. This notion of “Boolean localization” as
pertaining to our approach will be explored in detail elsewhere.

An interesting further development in the “Bohrification program” of (HLS) is the
work of van der Berg and Heunen (BH) [17], who make the claim that this program
is most naturally developed in the context of partial algebras, a concept introduced
in quantum mechanical considerations by Kochen and Specker. They show that ev-
ery partial Boolean algebra is the inductive limit of its total subalgebras, viz. the
commeasurable Boolean subalgebras. Note that in the proof of this result they use a
partial Boolean algebra together with a prescribed poset of total subalgebras as well
as the inclusions of the total subalgebras into the partial algebra. This is, in fact, an-
other form of a well-known theorem in the theory of orthomodular lattices, called
“Kalmbach’s Bundle Lemma” [11], as (BH) also point out. As we have also stressed
previously in our remarks to the (DI) approach, this result shows that the partial order
relation of “classical contexts” is not adequate to capture the structural information of
quantum logic, and at least, the inclusion functions of the “Boolean contexts” to the
quantum lattice should be also taken into account. In comparison, our approach to the
specification of a quantum event algebra via the left adjoint functor of the “Boolean
frames-quantum adjunction” is more general. In our case, the Boolean algebras of
the base category do not form a poset and actually they are not even required to be
subalgebras of a quantum event algebra. Moreover, the inductive limit is taken in the
category of elements of the functor of Boolean frames of a quantum event algebra.
It is instructive to remark that the partial order relation of a quantum event algebra
in this way is induced by lifting morphisms from the base category of Boolean al-
gebras to the fibers of the category of elements subject to the pullback compatibility
conditions.

Finally, we would like to comment briefly on a currently emerging research pro-
gram by Abramsky and Brandenburger (AB) [1], who have proposed the modeling of
contextuality and non-locality using the framework of sheaf theory. Their setting is
quite general by using weaker assumptions than standard quantum theory, and their
aim is to explicate the introduced sheaf-theoretic notions by applying them on empir-
ical models in a clear and simple way. An interesting aspect of this approach is that
the phenomena of contextuality and non-locality are detached from their quantum-
theoretic origins since they become applicable in a much wider spectrum through
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their association with sheaf-theoretic notions. In particular, the central claim of (AB)
is that the phenomena of contextuality and non-locality should be modeled in sheaf-
theoretic terms as giving rise to obstructions to the existence of global sections. More
precisely, they show that the existence of a global section, gluing together uniquely a
compatible family of elements in a presheaf pertaining to the empirical modeling of a
system, is equivalent to the realization of this system by a factorizable hidden-variable
model. Their empirical model of a system involves a measurement space (a finite and
discrete set), a finite covering of the measurement space (called a measurement cover-
ing consisting of a family of subsets, corresponding to measurement contexts, where
a measurement context is a set of measurements that can be performed jointly), a
finite set of outcomes, a presheaf of events assigning to each measurement context
its set of outcomes (being trivially a sheaf over a discrete space), and a presheaf of
distributions assigning to each measurement context its set of distributions on the sec-
tions defined over this context (such that the operation of restriction in the presheaf
corresponds to taking the marginal of a distribution). Then, for a measurement cov-
ering, a compatible family of elements of the presheaf of distributions (thus a sheaf
of distributions with respect to this measurement covering) defines a no-signalling
empirical model corresponding to this measurement covering. Of particular interest
for our purposes is the quantum representation of these empirical models. In this
case, a measurement covering consists of measurement contexts, which are identi-
fied as sets of maximal commuting subsets of the set of all observables on a fixed
Hilbert space (i.e., the set of all observables on a fixed Hilbert space define the mea-
surement space of a quantum empirical model according to (AB)). In comparison to
our sheaf-theoretic model, we notice the following: Instead of the set of all observ-
ables on a fixed Hilbert space, we take into account the global quantum event and
observable structure explicitly, thus our measurement space at the level of events is a
quantum event algebra (a quantum logic) and at the level of observables is a partial
commutative algebra (a quantum observable algebra). The measurement covering of
(AB) by sets of “maximal commutative contexts” corresponds to a Boolean covering
consisting of maximal complete Boolean algebras of projections, where each one of
them generates the spectral resolution of each “maximal commutative context”. Now,
in this setting of a quantum empirical model, (AB) define a quantum representation
by a state (density operator) on the fixed Hilbert space. Then, for each “maximal
commutative context” in the measurement covering, the state defines a probability
distribution on the set of commuting observables belonging to this context, by the
standard “trace rule”, and thus defines a presheaf of probability distributions on the
measurement space with respect to the measurement covering. This is analogous in
our case to the presheaf functor of Boolean measure theoretic (probabilistic) frames
of a quantum state with respect to a Boolean covering of a quantum event algebra,
which we have shown that it is a sheaf [21]. The pertinent question in the setting
of (AB) is if their presheaf of probability distributions is a sheaf with respect to the
considered measurement covering. (AB) show that this is actually the case, namely,
families of distributions are compatible on overlaps of measurement contexts in the
covering, and thus can be glued together. The important conceptual insight of (AB) is
that this result implies a “generalized no-signalling theorem” in quantum mechanics,
which incorporates the standard no-signalling theorem of Bell-type scenarios corre-
sponding to special cases of measurement coverings.
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A.2 The Left Adjoint Colimit Construction

The left adjoint L : SetsB
op → L of the Boolean realization functor of L is defined

for each presheaf P in SetsB
op

as the colimit (inductive limit)

L(P) = Colim

{∫
(P,B)

∫
P
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}

.

We can provide an explicit form of the left adjoint functor by expressing the above
colimit as a coequalizer of a coproduct using standard category-theoretic arguments.
For this purpose, if we consider the category of elements of the presheaf of Boolean
algebras P, that is

∫
(P,B), as an index category I , then the colimit of the functor

M ◦ ∫
P : I → L is expressed as follows:

⊔

v:B́→B
M(B́)

ζ
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η

⊔
(B,p)M(B)

χ
��
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��
��

������������������ LM(P)

where χ is the coequalizer of the arrows ζ and η. In the diagram above the second
coproduct is over all the objects (B,p) with p ∈ P(B) of the category of elements,
while the first coproduct is over all the maps v : (B́, ṕ) → (B,p) of that category, so
that v : B́ → B and the condition p · v = ṕ is satisfied.

In order to analyze in more detail the colimit in the category of elements of P
induced by the functor of local Boolean frames M, and because of the fact that L
is a concrete category, we may consider the forgetful functor from L to Sets. Then,
the coproduct

⊔
(B,p)M(B) is a coproduct of sets, which is equivalent to the product

P(B) × M(B) for B ∈ B. The coequalizer is thus equivalent to the definition of the
tensor product P⊗BM of the set valued functors P : Bop → Sets and M : B → Sets.
We call this construction the functorial tensor product decomposition of the colimit
in the category of elements of P induced by the functor of local Boolean frames M:

According to the above diagram, for elements p ∈ P(B), v : B́ → B and q́ ∈ M(B́)

the following equations hold:

ζ(p, v, q́) = (p · v, q́), η(p, v, q́) = (
p,v(q́)

)

symmetric in P and M. Hence the elements of the set P⊗B M are all of the form
χ(p,q). This element can be written as:

χ(p,q) = p ⊗ q, p ∈ P(B), q ∈ M(B).

Thus, if we take into account the definitions of ζ and η above, we obtain:

p · v ⊗ q́ = p ⊗ v(q́), p ∈ P(B), q́ ∈ M(B́), v : B́ → B.

We conclude that the set P⊗B M is actually the quotient of the set
⊔

BP(B)× M(B)

by the smallest equivalence relation generated by the above equations. The equiva-
lence classes of this relation can be further endowed with the structure of a quantum
event algebra, thus completing the construction of the left adjoint colimit in L via the
category of Sets.
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