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Fractals are widespread in nature1,2 and
have features that look the same when

there is a change in scale: they are called
‘self-similar’. In biology, self-similar pat-
terns are known to occur at many levels1–4

(Box 1). But fractals are also present in
time: the fluctuations of a given quantity
can appear the same when observed at
different temporal resolutions (Fig. 1a).
This is the case for heartbeat intervals5,
epidemics in small islands6, breeding bird
populations7 or the fossil record8.

Because fractals involve long-range
correlations, they also reflect some key
features of how living systems are or-
ganized and how they evolve in time. The
implications for evolution are very im-
portant, because cooperative effects
emerging from the interactions can lead to
new, sometimes counterintuitive, results.
A consequence of this is that order could
be generated through evolution by a syn-
ergy between natural selection and self-
organizing processes.

Scaling and power laws
The common feature of self-similar be-

havior is the presence of scaling laws4

(also known as power laws). Given the fre-
quency distribution N(s) of some quantity
s (number of species, size, lifetime, etc.)
it is said that it follows a power law if 
N(s) 5 Cs2t (Fig. 1a). Let us assume that s
stands for size. Here C is a constant and

t.0 is a given exponent, often called the
critical exponent. The reason why these
laws are characteristic of fractal objects
is that they are the only functions dis-
playing invariance under scale change. If
we look at a larger or smaller scale – that
is, if we take s9 5 gs – it is not difficult to
see that N(s9) 5 C9N(s) or, in other words,
a change of scale does not modify the
basic statistical behavior. 

The same argument can be employed
for a time series (Fig. 1b). If self-similar
behavior is present, then the time corre-
lations should decay in a power-law fash-
ion9. This is something that has been
widely observed and is known as ‘1/f-
noise’6,8,9. A 1/f-like signal looks like a
mountain landscape in time, rather than
space. The self-similarity is described by
the power spectrum P(f ), which measures
the contribution of each frequency to the
overall time series6. The 1/f noise is defined
as P(f ) < f-b being the exponent 0,b,2. 

Is there any particular situation where
such complex structures emerge? The
answer is yes. In physics, fractal struc-
tures in space and time were known to
emerge in the proximity of some types of
phase transition10,11. The classic example
is a magnetic material. A small piece of
iron can tug on a paper clip at room tem-
perature, but if we heat it to a high tem-
perature T, no magnetic power is ob-
served. We say the magnetization M is
zero. The atoms that form the iron are
themselves like small magnets. Each atom
only interacts with its nearest neighbors
and their natural tendency is to align
spontaneously into small domains with
the same orientation. At high T the cou-
pling between nearest atoms breaks
down because of thermal perturbations
and, therefore, the atoms can have any
polarity (up or down) and M 5 0. But sud-
denly, when the material is cooled down,
order spontaneously shows up. There is
a critical temperature at which global
magnetization appears (M.0) and both
fractal-spatial and fractal-temporal fea-
tures arise. These transitions are de-
scribed by an ‘order parameter’ (here M),
which is zero at the disordered phase
and positive otherwise.

Self-similarity is a defining character-
istic of the critical state. The surprise
came when physicists realized that very
different systems behaved exactly the
same when close to critical transition
points6,10,11. Surprisingly, extremely sim-
ple models of these systems provided an
exact description. This is a consequence
of the so-called ‘universality’. Universal-
ity means that systems sharing a small
number of basic features behave identi-
cally at the critical point. Are there also
universal principles behind apparently
different biological phenomena?

From RNA viruses to epidemics
Starting at the molecular level, an

example of a critical point in biological
systems can be exemplified by the dy-
namics of RNA viruses12. The under-
standing of how these entities evolve and
adapt must take into account their ex-
treme variability, caused by the error-
prone RNA polymerase activity and the
lack of proofreading mechanisms13. In-
stead of a given single sequence, we have
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Box 1. Fractals everywhere
The patterns displayed by many natural systems do not allow for a simple description using Euclidean
geometry: they present scale-invariance; that is, no characteristic length measure can be obtained from
them. Therefore, when observed at different resolutions, they display the same pattern. This is the case
of river networks and mountains1, tree branching and blood vessels3 or forest spatial structures2,4. Even
at the molecular level, fractals can be observed: if we analyse the linear distribution of nucleotides in a
DNA chain, a self-similar pattern can also be detected5. These structures – the so-called fractals – share
the presence of long-range correlations.
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a cloud of mutants around the so-called
‘master’ sequence. This cloud is known
as a quasispecies, a term first coined by
Manfred Eigen in 1971 (Refs 14,15).

RNA viruses adapt to a changing 
environment by making use of their 
variability. Selection pressures by the 
immune system force the virus quasi-
species to evolve. The quasispecies
model is consistent with this obser-
vation, but something defeats our intui-
tion: there is a critical mutation rate be-
yond which heredity breaks down. This
is referred to as the error catastrophe,
and it is nothing but a phase transition
point, which poses serious limitations to
the virus complexity (Box 2). (In fact, the
quasispecies model behaves as a mag-
netic system15.) Available molecular data
confirmed the theory: RNA viruses do
replicate close to the error catastro-
phe16,17. This property can only be under-
stood under the framework of critical
transitions. Recent experimental18 and

theoretical19 work show that critical
points could play a very important role in
the evolution of quasispecies.

These transitions are well known in
the dynamics of infectious diseases20 and
in some habitat fragmentation models21.
A simple, but important, illustration of 
a critical phenomenon in epidemics is
provided by contact processes22,23 (CPs).
The rules in the simplest model are de-
fined as follows (Fig. 2): (1) active (in-
fected) particles (A) die (becoming in-
active or susceptible) with probability g;
(2) if a given active particle survives,
each susceptible or inactive neighbor can
become infected or active, respectively,
with probability b. For a given g, propa-
gation occurs only if a given threshold bc
is reached.

Another instance of threshold phe-
nomena in ecology has been recently
reported in relation to the avifauna of
Hawaiian Islands24. After a gradual accu-
mulation of species, numerous extinction
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Fig. 1. Scaling and self-similarity. (a) Power
law: in a log–log plot, a power law distribution,
defined as N(s) < s2a gives a straight line.
Many small events are observed, but large
events are also likely to occur. (b) Time fluc-
tuations in the fossil record: here the total
extinction rate (3 100) for marine animal
families (see Benton29 for definitions of extinc-
tion measures) during the Phanerozoic (570
million years ago to the present) is shown (this
and other data are available from http://ibs.
ucl.ac.uk/benton/foss2.htlm). A wide spec-
trum of extinction events is observed. (c) The
sand pile is a simple example of how to get a
critical point. By slowly adding grains of sand,
the system is driven to instability. After a criti-
cal slope is reached, the addition of a single
grain can generate an avalanche involving s
grains of sand. Most times, only small ava-
lanches are observed, but eventually very
large avalanches will occur. The number of
avalanches N(s) involving s grains will follow a
power law.

0 200 400 600

Geological time (million years)

0

10

20

30

E
xt

in
ct

io
n 

ra
te

100  101 102

Avalanche size

101

102

103

104

F
re

qu
en

cy

(a)

(b)

(c)

Box 2. Recipe for a catastrophe: the error catastrophe
A population of strings is simulated to explore how the ‘master’ sequence population behaves when the
mutation rate is changed (a). Here, N 5 100 strings of size n 5 15. Each string is defined by a sequence
S1S2…Sn where Si e {0,1}. At each time step, we choose a string and make a copy of it after removing
another randomly chosen string. This replication takes place with probability P 5 1 if Si 5 1 for all units
(this is the master sequence) and with probability P 5 0.05 for any other string16. The copy process
involves a mutation rate m, which means that the probability of error per unit and per replication cycle is
m for each string. Starting from a random population, we repeat the same rules over 13104 steps and at
the end we look into the system to see if there is any copy of the master sequence. Here the master
sequence is the string 1111…11; that is, the one with the highest replication rate. This is averaged over
13102 trials and for each mutation rate we compute how many of these replicas (Pm) have at least one
master sequence. Although our intuition would expect a smooth, continuous decay of this probability,
there is actually a sharp decay close to a given critical mutation rate (i.e. Pm acts as an order parameter
for this transition). This phenomenon is known as the ‘error catastrophe’. It describes the breakdown of
heredity and the transition from a localized set of mutant sequences (localized around the master
sequence in sequence space) towards a random set of strings17. The inset graphs show the evolution 
of relative population sizes of strings when (b) m 5 0.05 and (c) m 5 0.12. The master sequence is
indicated by the unbroken line in these two graphs.

(Online: Fig. I )

0.00
0.0

0.2

0.4

0
0 100

Time

200

20

40

60
(b)

0.6

0.8

1.0
(a)

0.10
Mutation rate

O
rd

er
 p

ar
am

et
er

F
re

qu
en

cy

0.20

0
0 100

Time

200

20

30

40
(c)

F
re

qu
en

cy

10



158 TREE vol. 14, no. 4 April 1999

events occurred once a critical number
of introduced species was reached. The
statistical features where shown to be
power-law distributed, which suggests
that the accumulation of new species drive
ecosystems to criticality. However, this
is different from the previous scenarios.
Now, there is no parameter tuning the dy-
namics: as species number increases the
system becomes spontaneously unstable.

Criticality and self-organized
criticality

If fractal structures and self-similar
fluctuations are so common, perhaps
some universal dynamical processes are
at work. A possible scenario was pro-
posed in 1987 (Refs 25–27) and is known
as self-organized criticality (SOC). Self-
organized criticality is easily stated as
follows: large, far from equilibrium, com-
plex systems, formed by many interact-
ing parts, spontaneously evolve towards
the critical point. 

A simple metaphor of an SOC process
is provided by a sandpile25,26 (Fig. 1c). 
We add sand slowly, one grain at a time.
At the beginning, we have a flat pile, and
the grains stay where they land. The
grains are basically independent and their
behavior described by gravity and fric-
tion forces. But, as the slope increases,
we reach a regime where avalanches in-
volving grains in interaction are occurring

all the time. At the SOC state, there is 
one complex system, with its own emer-
gent dynamics. This new state cannot 
be anticipated from the properties of
individual units. In an ecological context,
the addition of new species would place
ecosystems close to a critical state, where
the collective and not the individual spe-
cies would be the relevant object in the
long run.

Models of SOC systems are very sim-
ple and typically parameter-independent.
In spite of their simplicity (and because
of their universality), they can be used to
model complex systems. In this respect,
it has been shown that the dynamics of
measles in small islands show power law
behavior6. In this study, the basic rules
are precisely the ones involved in the
‘forest fire’ model, one of the simplest
and best-known models displaying SOC
(Box 3)26,27.

Evolution and extinction
The fossil record is almost entirely

formed of extinct groups28,29. If extinction
is the fate of most lineages, one should
ask whether an external or internal pro-
cess is the relevant aspect of extinction
dynamics. Many recent theories claim
that external stresses are the cause of
extinction events28. However, we should
ask if these events are the causal agents
of extinction or the trigger points for a
complex biotic response.

Power laws are observed not only in
the distribution of extinction events and
lifetimes30, but also in the tree-like or-
ganization of taxonomy31. The presence
of these power laws soon led to the pro-
posal that large-scale evolution would be
the result of an SOC-like phenomenon.
This idea generated a number of models
exhibiting criticality. Among them, the
following can be cited.
• Models based on tunable rugged fitness
landscapes (Fig. 3): in these models,
species are evolving on landscapes that
deform because of the adaptive moves32

of other species. Genetic changes in dif-
ferent species alter the ruggedness of
their landscapes. If useful in the future
evolution of the progeny, the ruggedness
itself evolves. Species can also invade
one another’s niches. The losing species
goes extinct, whereas the invaders com-
prise a new sibling species created in the
niche. Species whose landscapes have a
ruggedness that is useful tend to succeed
at invasion. The result is that landscape
ruggedness evolves without group selec-
tion to reduce the probability of extinc-
tion events and increase mean fitness.
The result also yields a power law distri-
bution of extinction events (also called
coevolutionary avalanches).
• Models with external dynamics: in the
Bak–Sneppen (BS) model26,30,33, species
are first assigned random fitness values.
At each time step, the species with the
lowest fitness goes extinct, and is re-
placed by, or mutates to, another spe-
cies with a random fitness. This affects
the livelihood of interacting species,
which are also assigned new random fit-
nesses. As this darwinian evolution con-
tinues, extinction eventually takes place
in the form of coevolutionary avalanches

PERSPECTIVES

Fig. 2. Phase transitions in contact processes. A one-dimensional lattice of N 5 150 automata is used.
(a) The initial condition is random and the probability of decay is g 5 0.5. After T 5 250 time steps, we
check if the propagation still persists. By repeating the same process, we calculate the probability of
propagation (b) for different infection rates. Insets: (b) at the critical point (x), very long transients are
observed, with fractal-like trees of propagating infected units. Available data consistently show that such
breakpoints exist, such as in (c), where the number of months with measles (MWM) is plotted against
the population size. Data compiled from Ref. 22.

1.0
(a)

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4

Probability of infection (  )

0.6 0.8

103
0

20

40

60

80

100
(c)

104

Population size

M
W

M

N
um

be
r 

of
 in

fe
ct

ed
 u

ni
ts

105 106

1.0

β

0
0 100

X

T
im

e 
st

ep
s

200

100

200

(b)

Box 3. The forest fire cellular automaton
This is a cellular-automata model, which has been shown to display complex spatial and temporal frac-
tal behavior26. Because of its simplicity and its relation with infectious dynamics, it has been used as a
model of epidemics on small islands6. The system is described by a two-dimensional lattice of L 3 L
nodes where ‘trees’ are scattered. Each site can take three allowed states: empty (E, no tree), green (G,
tree) or burning (B, burning tree). The rules are defined by a set of transitions between states. Specifi-
cally, E→G with probability p and G→B with probability f. An additional rule is required for the propagation
of the fire front: if one of the eight nearest trees of a green tree is burning, the tree starts to burn. Burning
trees only burn for a single step (becoming empty afterwards). Fractal clusters of burning trees are
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of all sizes. The largest ones can repre-
sent mass extinction events, which thus
might take place without an external
stress. This model leads to SOC and
power laws for any macroscopic quantity.
• Network-ecosystem models: here, the
system is assumed to be defined at the
ecological timescale by a network of con-
nections34. Ecological responses are the
relevant component of the dynamics,
instead of coevolutionary avalanches. At
each step, random changes in the con-
nectivity are allowed to occur. The re-
sponse of the system to such changes is
highly nonlinear and might generate
large extinction events. Diversification is
introduced and the correct statistical
distribution of extinction events, life-
times and even a fractal taxonomy34 are
obtained.

A particularly important consequence
of these models is the decoupling be-
tween micro- and macroevolutionary pro-
cesses34. Across some short timescale,
adaptation of species to a given abiotic
and biotic environment takes place. We
can clearly identify coevolution between
directly related species, but little attention
has been paid to the indirect effects (i.e.
higher-order interactions34,35). Because
such interactions reflect network proper-
ties, which are not reducible to the two-
species pairs, we might ask how relevant
are such indirect effects in the long run. If

network properties are important, a
change in one species could propagate
through the system in a highly nonlinear,
unpredictable way. The consequences 
of such propagation are unlikely to be
explained through the adaptation or se-
lection processes that can be applied to
single species or simple two-species sys-
tems. The highly unpredictable network
dynamics could provide the natural
source of decoupling between micro- and
macroevolutionary dynamics34.

It is worth mentioning that field data
support the view of a patterned, network-
dependent response of ecosystems to
perturbations. In this context, the collec-
tive features of network interactions be-
come clear when the energy flow between
species is analysed. Links representing 
a relatively small strength can have a
large impact on stability, whereas inter-
actions involving an important flow of
energy can have a small impact36. In ad-
dition, at a different scale, an extensive
analysis of available ecological time se-
ries revealed that in most cases the ob-
served fluctuations were characterized
by a very small Largest Lyapunov Expo-
nent37 (LLE). Roughly, the LE is negative
for equilibrium points and positive for
chaotic dynamics, respectively. The SOC
theory typically predicts an LE close to
zero, precisely at the point separating
stable from unstable dynamics.

Prospects
Scaling behavior and critical points

are commonplace in different biological
systems. In some cases, such as in epi-
demiology or the effects of habitat frag-
mentation, the available information is
rather detailed. But many open problems
remain to be solved, and new theoretical
and field studies are needed, in particular:
• The analysis of scaling in multispecies
communities. New models involving eco-
logical timescales that can incorporate
individual-based interactions should be
explored38.
• Analysis of long-term field studies 
of species removal and development of
new theoretical models able to test the
presence of criticality and avalanches in
response to perturbations, as well as the
relevance of higher-order interactions35.
• Studies on the spatiotemporal behav-
ior of rainforest plots4, both in terms of
species diversity and canopy structure.
Calculation of fractal properties and
temporal dynamics would greatly help,
as a quantitative way to understand how
diversity and nonequilibrium dynamics
are related38.
• Fine-scale analysis of fossil record
time series, with comparisons between
fluctuations in physical variables (such
as in Newman39) and biotic fluctuations.
Analysis of fractal patterns of diversifi-
cation and taxonomy and their possible
dynamical origin are also required.

There is a need for new theoretical
frameworks that allow us to understand
how self-organization, selection and his-
torical accident find their natural places
with one another. 

The great success of theoretical
physics gives us confidence that simple
models can account for the macroscopic
behavior of complex systems. This state-
ment is apparently unlikely to be ex-
tended to biology, where details often
matter. But population and evolutionary
biologists have been successfully using
oversimplified models of ecology and
evolution – and certainly, at some scale,
many details do not matter. We should
not forget that physics and biology have
often come to a common language where
challenging ideas have been born. We
believe that the potential results of such
a dialogue are well worth the effort.
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Fig. 3. The fitness landscape: this was first introduced by Wright (see Kauffman32 and references cited
therein) as a useful tool for thinking about complex genetic systems. The horizontal axes (the scale is
arbitrary) usually stands for gene frequency, but they can even be drawn with phenotypic variables. Maxima
represent local optima and natural selection is interpreted in terms of a hill-climbing process, directing the
population up towards the current nearest peak. The real landscape is multidimensional and cannot be
visualized in such a simple way. Landscapes can be smooth and single peaked, rugged and multipeaked, or
entirely random, and evolution searches such landscapes using mutation, recombination and selection.
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Poles apart 

The Biology of Polar Habitats
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The Biology of Polar Habitats is one of a
series of texts giving overviews of dif-

ferent habitats. The series’ remit is to give
an overview of design, physiology, ecol-
ogy and behaviour of organisms in the spe-
cific habitats, pitched at a level appropriate
for the biological or environmental stu-
dent, new field worker or knowledgeable
naturalist.

Within this remit, it is plainly simplistic
to attempt to recognize a ‘polar’ habitat.
This volume aims to demonstrate the range
of habitats that exist towards both poles,
the various important ways in which these
two regions differ, and how the regions

influence or are used as models or sensitive
barometers for processes that take place at
lower latitudes much closer to home. In tak-
ing an holistic approach across marine,
freshwater, terrestrial and ice-driven bi-
omes, Fogg has created a volume that fills
an important and vacant niche.

It quickly becomes apparent that de-
spite the many similarities to be found in
comparisons of the two polar regions they
are by no means two simple alternatives.
Many of the differences that exist are
driven by geography. The Arctic consists 
of northern continental regions fringing a
largely enclosed, relatively shallow and
cool ocean, whereas the Antarctic is a 
large continent (greater in area than Europe
or Australia) surrounded by a very cold
ocean and isolated from the rest of the
world by oceanic and atmospheric cur-
rents. The book highlights the scale of the
polar regions’ role as an energy sink, by
which they exert an important controlling
influence on global climates and circulation
patterns.

Fogg introduces the reader to the ma-
jor types of polar habitat: glacial (ice and

snow), periglacial terrestrial, inland water,
marine benthos, sea ice and open seas. The
text is peppered with references to the
importance of polar habitats in the global
system but does not overlook some of the
remarkable features that allow polar organ-
isms to survive and even flourish in situ. 
On the one hand, we learn that rivers drain-
ing 14% of the Earth’s land area drain into
the Arctic Ocean, yet the longest river in
Antarctica is only 40 km and spends most
of the year completely frozen. On the other
hand, approximately 15 3 106 km2 of sea-
ice form and melt over the Southern Ocean
each year, influencing the biota of seas,
which are thought to be an important car-
bon sink, possibly buffering increasing
atmospheric CO2 levels, while also account-
ing for c. 25% of biogenic silica deposition
worldwide.

Productive areas of research are likely
to benefit from synergies of disciplines
across major biomes. Thus, fundamental
differences in patterns of environmental
variability acting on different timescales in
marine and terrestrial habitats are prob-
ably behind the differences in physiology,
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