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Abstract

Understanding the genetic regulatory network comprising genes, RNA, proteins and the network connections and dynamical

control rules among them, is a major task of contemporary systems biology. I focus here on the use of the ensemble approach to find

one or more well-defined ensembles of model networks whose statistical features match those of real cells and organisms. Such

ensembles should help explain and predict features of real cells and organisms. More precisely, an ensemble of model networks is

defined by constraints on the ‘‘wiring diagram’’ of regulatory interactions, and the ‘‘rules’’ governing the dynamical behavior of

regulated components of the network. The ensemble consists of all networks consistent with those constraints. Here I discuss

ensembles of random Boolean networks, scale free Boolean networks, ‘‘medusa’’ Boolean networks, continuous variable networks,

and others. For each ensemble, M statistical features, such as the size distribution of avalanches in gene activity changes unleashed

by transiently altering the activity of a single gene, the distribution in distances between gene activities on different cell types, and

others, are measured. This creates anM-dimensional space, where each ensemble corresponds to a cluster of points or distributions.

Using current and future experimental techniques, such as gene arrays, these M properties are to be measured for real cells and

organisms, again yielding a cluster of points or distributions in the M-dimensional space. The procedure then finds ensembles close

to those of real cells and organisms, and hill climbs to attempt to match the observed M features. Thus obtains one or more

ensembles that should predict and explain many features of the regulatory networks in cells and organisms.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

We have entered the post-genomic era. We know
most of the genes, the coding regions, some of the cis

regulatory sites and transcription factors, some of the
protein components of cell signaling cascades that are
driven by transcription and translation, and in turn
feedback to regulate gene activities. Let me refer to this
whole system as the genetic regulatory network. One of
the outstanding problems of contemporary systems
biology is to understand the structure, logic and
dynamics of this network within and between cells.
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In this new era, we will need new experimental,
theoretical, experimental design, and data mining tools.
We are, after all, attempting to understand systems with
30,000 or so genes and perhaps even more proteins,
which interact in richly connected ways by differing
rules. Indeed, with the new data suggesting that RNA
transcripts from non-coding regions may play a
regulatory role (Gibbs, 2003), the total number of
‘‘genes’’ may be far larger.
In this task, there are at least three theoretical

approaches, each with advantages and disadvantages.
The first builds detailed kinetic models of small isolated
genetic circuits, (McAdams and Arkin, 1998, 1999). The
virtue of this approach is that detailed comparison with
experiments is possible. The disadvantage is that if one
took 10 genes from a human genetic network and tried
to build a detailed model of that sub-circuit, it would
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almost certainly be impacted by other genes from
outside the sub-circuit, so detailed modeling would not
capture all the dynamics.
The second approach I will call solving the ‘‘inverse

problem’’. Using gene expression arrays, proteome
arrays, and so forth, you show me the patterns of genes
turning on and off, or proteins increasing and decreas-
ing in abundance, and I deduce and tell you the circuitry
and ‘‘logic’’ driving this dynamical behavior. The
advantages of this approach include the fact that one
is trying to deduce the actual circuitry and logic of the
real network, or parts of it. The disadvantages include
the fact that the data is noisy, that the inverse problem
has, so far, met with limited success to my knowledge,
(Hartemink et al., 2002) and will typically lead at best to
a family of candidate networks. On the other hand, such
a family provides hypotheses to be tested experimen-
tally. The inverse approach will undoubtedly be an area
of intense focus in the coming years.
The third approach will be termed the ‘‘ensemble

approach’’. There is a fundamental ontological assump-
tion underlying this approach, and it is not known if
that assumption is true or false. Is it the case that the
genetic network in an organism, or a species, or family
of species, after 3.8 billion years of natural selection and
evolution, is a highly crafted, ‘‘one off’’ design,
brilliantly tuned by selection to achieve its functions?
Or might it be the case that real genetic regulatory
networks are more or less ‘‘typical’’ members of some
class, or ensemble, of networks which selection has
modified to some degree? In the latter case, we may be
able to gain very considerable insight into the structure,
logic, and dynamics of gene regulatory networks by
examining the typical, or generic properties, of ensemble
members. In addition, examination of the ensemble may
help uncover any principles of organization that explain
the behavior of the specific genetic networks in an
organism, species, or a related set of species. In the last
two cases, the diversity of real regulatory networks also
forms some kind of ensemble with statistical features
that can, ultimately, be studied.
At a minimum, the ensemble generic properties of

ensembles that match cells can serve as useful null
hypotheses about what we would expect to find, and
direct further experimental work. Such experimental
work is of use in itself, and also to provide more detailed
information upon which to construct more refined
ensembles that, iteratively, capture all we keep learning
about genetic networks. That knowledge can be used to
construct refined ensembles that utilize what has been
learned as constraints and randomize over the remaining
structural features and rules governing gene activities to
create the improved ensembles.
The ensemble approach and the inverse problem can

mutually inform one another. As noted, if the inverse
approach suggests one or a family of networks, their
statistical features can be used to construct refined
ensembles reflecting those constraints. Conversely, if the
ensemble approach successfully predicts many features
of real cells and organisms, as described below, the
ensemble(s) that do so have statistical features that can
be used as constraints to narrow the search space for the
inverse problem.
I will focus in this article on the ensemble approach.

The first attempt, (Kauffman, 1969) was the introduc-
tion of random Boolean networks, where a gene is
modeled as if it were an on–off device, and time is
updated synchronously by a central clock (surely not
characteristics of real cells). The first ensembles studied
were networks with N genes and K regulatory inputs per
gene, with K ¼ N ; and K ¼ 2: This work, described
momentarily, has been taken up and extended by many
workers, (Kauffman, 1993; Derrida and Pommeau,
1986; Derrida and Weisbuch, 1986; Flyvbjerg, 1998;
Bastolia and Parisi, 1996; Aldana et al., 2002). I will
describe the behaviors of the first such networks, analyse
of some of the predictions of the simplest model, and
discuss a variety of currently measurable statistical
features predicted by such networks. I will discuss the
use of those, say, M, features, measured in N different
ensembles of networks, to create an M-dimensional
feature space in which to locate the N different
ensembles. This leads to a discussion of the correspond-
ing work to measure the same M features in real cells
and organisms and locate real cells and organisms as a
cluster of points in the M-dimensional space. In turn,
this leads to the use of the information about real cells to
rule out some ensembles as inappropriate, find the best
or better fitting ensembles which are closer to real cells
in their predictions, and refine those ensembles to ‘‘hill
climb’’ toward the real cell data. A resulting ensemble
that fits theM properties of real cells is a good candidate
to capture many features of real genetic networks, and
should offer a number of further independent predic-
tions to be tested and the results used to refine further
the ensemble in question. This iterative approach is, I
hope, a step toward a productive use of the ensemble
approach.
At least five initial ensembles of Boolean networks,

distinguished by their ‘‘wiring’’ diagrams, are now
available: (1) Classical random Boolean nets where each
of N genes receives the same number, K, inputs,
randomly chosen among the N. (2) Boolean nets in
which K is not fixed, but exponentially distributed and
each gene is randomly assigned its K inputs. (3) Scale
free networks in which there is a power law distribution
of inputs or outputs or both from the genes, (Oosawa
and Savageau, 2002; Aldana, 2003). (4) Small world
networks. (5) ‘‘Medusa networks’’ in which a small
‘‘regulatory head’’ contains a network among transcrip-
tion factors that regulate one another, and an acyclic
directed graph hanging off that head which contains
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genes that are regulated but not regulating. The sparse
data available tend to support either a scale free
network, (Oosawa and Savageau, 2002) in E. coli, or a
medusa network wiring diagram in yeast, (Lee et al.,
2002). In addition to these structural classes, different
biases in the classes of Boolean functions can be
introduced, particularly including canalysing and high
P functions, and certain post classes, (Shmulevich et al.,
2003). Canalysing and high P functions are explained
below. Beyond Boolean nets, one can consider:
(1)
 Discrete S state networks that remain synchronous
(Sole et al., 2000)
(2)
 Boolean or S state networks that are randomly
asynchronous,
(3)
 Probabilistic Boolean nets where each gene is
governed by a small set of Boolean functions given
by best fits to data, and which rule governs each
gene is chosen randomly from the small set at each
moment (Shmulevich et al., 2002).
(4)
 Boolean nets in which genes have a distribution of
time scales.
(5)
 Networks of piecewise linear equations (Glass and
Hill, 1998).
(6)
 Networks with continuous Hill functions (Kauff-
man, 1970).
(7)
 Networks with more detailed and realistic equations
representing both RNA and protein synthesis
(Goutsias and Kim, 2004).
Clearly, the ensemble approach can include a wide
variety of model genetic networks.
In the next section, I describe the basic features of

classical Boolean networks. In the third section I
describe an initial set of M features that are currently
largely measurable in cells or organisms, and are a start
towards defining an M-dimensional space in which to
locate real cells and organisms, as well as the initial set
of N ensembles mentioned above.
2. Classical random Boolean networks

A classical random Boolean network, as noted, has N

genes, each receiving K inputs per gene. The K inputs are
chosen at random from among the N. Each gene is
assigned at random one of the possible Boolean
functions on K inputs. This random construction is
then fixed and the network is said to be ‘‘quenched’’,
(Derrida and Pommeau, 1986). The point of random
construction is this: There is an enormous ensemble, or
class, of all possible networks with N genes and K inputs
per gene, even for modest N. In order to study the
typical, or generic, properties of the ensemble, the
proper procedure is to sample the ensemble many times
at random, examine each network sampled for a
number, M, of properties, and thereby build up a
statistical understanding of the distribution of those
properties in the ensemble in question. I hasten to add
that, while I have followed this approach for years, no
one, myself included, thinks that real gene networks are
random after 3.8 billion years of selection. On the other
hand, the early hope was, and remains, that some
ensembles inherently display properties that are biolo-
gically plausible and fit features of real cells and
organisms. This hope seems reasonably justified, (Kauff-
man, 1993). If so, there is a deep implication, for those
generic ‘‘self-organized’’ properties may then account
for some of the order seen in organisms. Now it is not
required by Darwinian theory, but most biologists
believe that virtually all the order in organisms is due
to natural selection. If the ensemble approach succeeds,
we will have to confront the possibility that some of the
order in organisms is self-organized, and therefore that
there are at least two sources of order in biology,
selection and self-organization. In turn we will be forced
to analyse whatever sources of self-organization may
exist, and how that self-organization mixes with and
marries to natural selection.
Consider the dynamics of a random Boolean network.

Each combination of gene activities, 1 or 0, across the N

genes constitutes a state of the network. Hence there are
2 raised to power Nth states. Ponder this for a moment.
A network with 30,000 genes would have about 10
raised to power 10,000th states. The known universe has
something like 10 raised to power 80 particles. So 10
raised to power 10,000 is a truly vast number. A human
is said to have on the order of 265 cell types, (Alberts
et al., 1983). Evidently, not all possible states constitute
cell types.
Start the network in an initial state, a combination of

the on or off activities of the N genes. Each gene
examines the activities of its K inputs, consults its
Boolean function, and assumes the proper next state of
activity at the next clocked moment. Thus the network
progresses from a state to a state at each clocked
moment. Over a succession of moments, the system
traces out a trajectory in its state space. Since the
number of states is finite, eventually, the system re-
enters a state previously encountered on the trajectory.
Since the system is deterministic, it thereafter cycles
repeatedly around a loop of states called a state cycle
attractor. It is a trivial property of such networks that
they have at least one state cycle. The rest of the
properties are highly non-trivial. Among the first of
these properties are the number of states on state cycles,
which might range from 1, a steady state, to 2 raised to
power N. If the network is released from a different
initial state, it might flow to the first state cycle along a
trajectory, or flow to some other state cycle. Each state
cycle attractor, plus the transients that flow into it,
corresponds to a basin of attraction. The basins
partition the state space, each state flows to a single
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attractor. Hence a second property of interest is the
number of state cycle attractors in the network. I will
describe a variety of network properties below.
Work since the introduction of random Boolean

networks has revealed that such networks behave in two
broad regimes, ordered and chaotic, with a phase
transition, sometimes dubbed the ‘‘edge of chaos’’,
separating the two regimes. It is useful to visualize an
hypothetical movie to characterize the two regimes.
Start a network in an initial state. If a gene is turning on
and off, color it green. It is ‘‘going’’. If a gene stops
changing and is locked in the on or off state, color it red,
it is ‘‘frozen’’. In the ordered regime, as the movie starts,
all genes are green. Soon, more and more turn red, until
a connected red sub-network of the genes spans, or
percolates across the network, leaving behind green
islands whose genes twinkle on and off. The size of the
percolating red structure scales with the size of the
system, N. In unpublished results on K ¼ 2 networks
achieved with Colin Hill, we found that in these
networks, which lie on the phase transition hence are
critical, the size distribution of green islands is a power
law, whose mean increases logarithmically with N.
In the chaotic regime (here high dimensional chaos in

a discrete deterministic system with state cycle attractors,
hence not to be confused with low-dimensional chaos
with positive Lyapunov exponents on chaotic attractors
in continuous systems), the results of the movie are just
the opposite. A green twinkling sea spans or percolates
across the system leaving behind red frozen islands.
As parameters, such as K, or biases on the Boolean

functions such as canalysing and P, described below, are
tuned, the networks can pass through the phase
transition. That transition occurs just as the green sea
is breaking into green islands, (Kauffman, 1993). Thus,
it is now known that K ¼ 2 networks are exactly critical,
lying just on the border between order and chaos, K ¼ 1
networks lie in the ordered regime, while K ¼ 3 or
higher networks lie in the chaotic regime (Derrida and
Pommeau, 1986).
3. New biological observables predicted by ensembles

3.1. The size distribution of avalanches of changing gene

activities following perturbation

One of the features of both the ordered and chaotic
regimes concerns the size distribution of avalanches of
‘‘damage’’ that spread through the network by transient
perturbation of the activity of a single gene by
transiently reversing its activity. Define a gene as
damaged if its dynamical behavior in the perturbed
system is ever different from the unperturbed system.
Hence, even if the gene returns to normal behavior, once
damaged, the gene is called damaged. A characteristic of
the chaotic regime is that most avalanches are vast,
altering the activities of 30–50%, approximately, of the
N genes. For a biological network with 30,000 genes that
would predict that about 10,000–15,000 genes or so
would commonly alter their behavior following a
random perturbation to the activity of a single gene.
This has never been seen to my knowledge, and is
biologically implausible. In the chaotic regime, there is
also a power law distribution of small avalanches. In the
ordered regime, by contrast, avalanches of damage do
not propagate through the red frozen sea, hence are
confined to the green islands and perhaps the red genes
that constitute the edges of the green islands. The size
distribution of avalanches is a power law with a finite
cut off that appears to scale as a square root function of
N, (Harris et al., 2003). Thus, in humans, avalanches
should typically affect one to several hundred genes.
This is biologically plausible.
The size distribution of avalanches of damage

constitutes the first of the M properties that I wish to
mention. Note that by using exogenously introduced
promoters, RNAi, or other techniques, it is now
perfectly possible to transiently activate or inactivate a
given gene, then use gene arrays to study the size of the
damage avalanche as it spreads from the initial
perturbed gene. Such work faces technical issues, such
as non-specific effects of introduced RNAi which may
be controlled by subtractive experiments introducing
nonsense RNA, the high signal to noise ratio for RNA
expressed at low levels, which may be able to be handled
by limiting attention to avalanches concerning genes
whose levels of expression are above a defined higher
signal to noise ratio, the sampling rates required to
observe changes in gene activities along such avalanches,
and general difficulties quantitating gene array data.
Thus, we can, with effort, determine the size distribution
of such avalanches for real cells, modulo the experi-
mental issues, noted above, which also includes asyn-
chrony of cells around the cell cycle, possible differences
in gene expression even in synchronized cells, and
sometimes, mixtures of more than one cell type. Use
of synchronized unicellular organisms such as yeast, or
synchronized cell lines for such experiments may be a
preferred approach.
It is important to emphasize for this first of the M

properties, and the rest I will mention, that they are new
biological observables that are currently largely measur-
able, but not the typical aspects of genetic networks
upon which biologists have focused. For example, the
size distribution of avalanches has not been measured to
my knowledge.

3.2. Cell types as dynamical attractors

I now make a single biological interpretation. I noted
above that humans have about 265 cell types. By
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contrast, the state space of a gene network of 30,000
genes is huge. Most states of the genome cannot be cell
types. In 1963 Jacob and Monod set the stage for
modern thinking about why cell types are different
(Jacob and Monod, 1963). They proposed a little circuit
in which gene A represses B, while B represses A. This
circuit has two steady state attractors, A on, B off, and
A off, B on. Hence, this little circuit supports two cell
types with the same set of genes. Of course it is clear that
cell types are different patterns of gene activities. It is
not clear that cell types, at the molecular dynamic level,
are attractors. But, following Jacob and Monod, I shall
propose that some or all of the alternative state cycle
attractors of random Boolean nets, or alternative
attractors of other dynamical models of the gene
network, constitute the cell types of the organism.
Aldana et al. (2002) have raised an important criticism
of this concept for Boolean nets, namely that closure of
a state cycle orbit is unstable to noise. This is correct. In
commenting on this point, it may be useful to mention
here that piecewise linear models of genetic nets also
have alternative attractors. These attractors live in
continuous state spaces. For molecular noise with finite
variance, which seems plausible for real molecular noise
in cells, the attractors may be stable to most or all
such noise. This requires investigation. A possible
manifestation of random molecular noise in real genetic
networks may be the phenomenon of metaplasia,
(Kauffman, 1993).
The hypothesis that attractors are cell types raises a

number of important questions that can be addressed
experimentally and theoretically. Experimentally, we
can take synchronized cell line populations, perturb the
current activity of randomly chosen genes, and ask, via
gene arrays, whether the perturbed system returns to its
former steady state or oscillatory pattern of gene
activities. That is, is it typically the case that cell types
are stable attractors to most small perturbations?
Note that the same question can be tested with cells

asynchronously distributed around the cell cycle. One
averages gene activities around an oscillatory attractor
and asks for the attractor, whether the system returns to
the average patterns of activity after perturbation of
single model gene activities. One then asks, for
asynchronous cells, if they return to their former pattern
activities after transient perturbation of single gene
activities. I emphasize that this is now testable, and
count this homeostatic feature as another of the M

features that will constitute the M-dimensional space of
properties for a hoped for productive use of the
ensemble approach.
On a theoretical level, at least three further major

questions are raised by the hypothesis that attractors
correspond to cell types. First, is there a scaling law for
the number of state cycle attractors as a function of N

that would predict correctly the scaling relation between
the number of cell types of an organism and the number
of its genes, (perhaps including the possibility of ‘‘junk’’
RNA playing regulatory roles (Gibbs, 2003)? In my own
earlier work, I found numerical evidence that, for K ¼ 2
network, the number of attractors scaled as a square
root function of the number, N, of genes, (Kauffman,
1969). This square root scaling result has recently been
shown to be wrong. I under-sampled very large state
spaces and missed small basins of attraction. For small
networks there is numerical evidence that the scaling law
is linear for K ¼ 2 networks (Aldana et al., 2002),
which, as noted, lie on the phase transition between
order and chaos. More recently, Socolar and I (Socolar
and Kauffman, 2003) found evidence that the scaling for
K ¼ 2 networks is faster than linear, but is slower deeper
in the ordered regime. This fact, if it holds up, means
that we cannot predict the scaling law for the number of
cell types as a function of the number of genes without
knowing where, if at all, cells lie in the ordered regime,
and also knowing the number of genes. On the other
hand, the right ensemble, random Boolean nets, scale
free nets, small world nets, medusa nets, or others,
should be able to fit the observed scaling law, if position
in the ordered regime is measured, as described next,
and the number of genes is known. I count this scaling
property as another of the M properties.
Another feature of interest, if cell types are attractors,

is to measure the overlap in gene expression patterns
between all the attractors. There are several ways to
define this overlap. For example, if attractors are state
cycles longer than 1, then the average number of states
that a gene is active can be calculated, and a real vector
of activities represents that attractor. A real vector also
represents the activities of genes on steady state
attractors. Then both for steady state attractors and
state cycles longer than 1, the Euclidian distance
between each pair of attractors can be calculated. This
gives a distribution of distances between attractors.
What does the distribution look like? Small samples of
K ¼ 2 networks suggests a hierarchical pattern, with
clusters of nearby attractors, linked to more distant
clusters. These sparse results seem biologically plausible.
However, the exact properties of such clusters are as yet
unknown even for K ¼ 2 random nets, let alone scale
free, small world, medusa, or other ensembles, but
clearly open to investigation theoretically. Meanwhile,
in principle, the exact same distribution of distances is
even now experimentally accessible using gene expres-
sion arrays on the cell types of one organism. Technical
difficulties here include the usual problems concerning
gene expression arrays, synchronous versus asynchro-
nous populations of cells, (where asynchronous popula-
tions may be preferable to synchronous cells to average
expression levels around an oscillatory pattern), and
also obtaining populations of pure cell types which may
be approached, if need be, by laser dissection. I count
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this too as one of the M features we should use. The
correct ensemble should correctly predict the statistics of
this distribution for realistic values of N across
organisms.

3.3. The Derrida curve: measuring position in the ordered

or chaotic regime

Derrida and Pommeau (1986), showed analytically
that there is a phase transition in what they termed the
annealed model of random Boolean nets, between an
ordered and chaotic regime. Indeed, they showed that
K ¼ 2 nets are critical, and K > 2 nets are chaotic. A
Derrida plot is created as follows: Consider initial pairs
of Boolean network states. Count the fraction of genes
in the two states that are in different states of activity.
This normalized Hamming distance is called the initial
distance between the pair of states, Dt. Now let each
state evolve to its successor state under the rules of the
network. Measure the distance between the pair of
successor states, call that normalized distance Dt þ 1: In
a Cartesian coordinate system, let the X-axis give all
values of Dt, from 0.0 to 1.0, and the Y-axis give all the
values of Dt þ 1 from 0.0 to 1.0. Now plot, for any
initial pair of states at a distance Dt, and their successor
states at distance Dt þ 1; a single point in the coordinate
system corresponding to both Dt on the X-axis, and
Dt þ 1 on the Y-axis. The main diagonal, Dt ¼ Dt þ 1
corresponds to a line where successor states are the same
distance apart as the initial states. This does not mean
that nothing has changed in going from initial to
successor states, merely that the distance has not
changed.
The main diagonal separates the ordered from the

chaotic regimes. In the ordered regime, the Derrida
curve, for all Dt, is everywhere below the main diagonal,
implying that, on average, pairs of states in the ordered
regime lie on trajectories which converge in state space.
This convergence is the heart of homeostasis. In the
chaotic regime, small Dt states diverge, so that the curve
passes above the main diagonal for small Dt, and falls
below it for large enough Dt. Thus, nearby states in the
chaotic regime, on average, lie on trajectories that
diverge from one another in state space. This divergence
is the first step in the avalanches of damage described
above.
I count the Derrida curve as another feature among

the M. And I emphasize that the Derrida curve,
certainly for small Dt, is experimentally testable now
by perturbing the activities of one or a modest number
of genes and asking whether convergence or divergence
in gene expression patterns is found in gene array data.
Testing this would seem to require synchronized cell
populations. Again, note that, while currently testable,
the Derrida response of cells is a new biological
observable never before probed, and in turn, that the
curve itself probes the global dynamics of genetic
regulatory networks.
Note also that, by measuring the Derrida curve for

real cells, we can attempt to assess whether and where
cells lie in the ordered or chaotic regime, hence we
should be able to deduce the scaling law for the number
of cell types in an organism as a function of the
number of its genes. The missing data are a count of
the number of ‘‘genes’’ in different organisms given the
uncertainty of what counts as a gene playing a role in
the network. As noted above, this scaling law is one of
the M properties that we can use. It should be properly
predicted by the right ensemble of networks given the
number of genes in organisms.

3.4. Pathways of differentiation

In the case of K ¼ 2 random Boolean nets, attractors
are stable to most small perturbations transiently
reversing the activities of one gene at a time on all
states of the attractor, showing homeostasis, but under-
go transitions to a few other state cycles for some
perturbations. I note that if cell types are attractors,
then transitions between attractors model pathways of
differentiation. I also note that the fact that each
attractor can only undergo transition to a few other
model cell types, and they to a few others, and so on,
implies that differentiation from the zygote must follow
branching pathways of differentiation. This property is
seen in all multi-celled organisms developing from a
zygote. Indeed, this fact raises the question of the role of
self-organization. Do we think that natural selection has
struggled for all these years to achieve branching
pathways of differentiation, or is it a property so deeply
embedded in the ensemble of genetic networks explored
by evolution that it ‘‘shines through’’ and selection
makes use of it? If the latter is true, then, as noted, there
are two sources of order in biology, self-organization
and selection.
The branching pathways of differentiation between

attractors in a Boolean network in the ensembles
described above, or other networks, create a directed
graph showing which attractors can be perturbed to
reach which attractors. The statistical features of these
directed graphs can be compared to known branching
pathways of differentiation in different organisms. I
include the features of this directed graph among the M

features of interest.
A number of features of pathways of differentiation in

ensembles and cells can be measured. As noted,
perturbation of one attractor may yield one or several
perturbations of genes on states that then lie on
trajectories, or transients, that flow to another attractor.
For such transients, which are models of differentiation
pathways, we can measure the number of states on the
transient, the gene activity differences between adjacent
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states along the transient, the distribution in the number
of times genes alter activities along the transients, and
the distribution of the average time a gene is in a
different state of activity along a transient compared to
its activity in the state on the initial attractor state which
was perturbed.
There are difficulties testing some of these predictions

by examining the patterns of gene activities at sampled
time points along pathways of differentiation in real
cells. The clocked successive time moments in a Boolean
net are clearly defined. But real cells have genes with
continuous, somewhat noisy, levels of gene expression
that wax and wane on different time scales. It is not clear
how to map time moments along a Boolean net transient
to time moments for real cell differentiation trajectories.
This may make measuring the ‘‘length’’ of a transient
difficult in real cells, and the differences in gene activities
between adjacent states on a transient difficult.
At least the next to last and the last properties can

probably be compared between ensembles and real cells.
The distribution of the number of times genes change
activities along a real differentiation transient is
probably currently measurable by inducing differentia-
tion of a synchronized cell line and, modulo accuracy of
gene array data, obtaining a time series of arrays then
counting how many times different genes change activity
along the pathway, that is, how many change once,
twice, and so forth. In more detail, make a fine-grained
time series. For each gene, define a threshold above
which it will be considered ‘‘on’’ and below which it will
be considered ‘‘off’’. Using these thresholds, classify the
time series moments of each gene into on and off activity
levels. Count, along the time series, the number of times
that gene has changed activities. Do so across the
thousands of genes monitored along the differentiation
transient and create the corresponding histogram of the
number of genes changing activity 0, 1, 2, or more times.
Compare the histogram to the histograms predicted by
the Boolean net model, or those of other ensembles.
There are, with respect to Boolean nets, at least three

remaining technical problems. How are the thresholds
set per gene? How fine grained must the time series be to
capture the changes in gene expression along a pathway
of differentiation, and is that rate of sampling techni-
cally feasible? And for synchronous Boolean nets,
transients of each length have well-defined histograms
that, in initial results, change as the length of the
transient changes. But we do not know how to map
the corresponding length of the Boolean net transient to
the real transient. One possible approach is to ask if the
real cell histogram fails to match any of the histograms
predicted by the ensemble. If so, the ensemble would
appear to be a poor match to cells. Conversely, if the
real cell histogram matches at least one theoretical
histogram, the data are at least consistent with that
ensemble.
The last property, the average time a gene is in a
different state than the state it was in on the perturbed
state of the attractor, should be directly measurable, and
does not require mapping Boolean net time to real time.
These experiments would appear to require synchro-
nized cell populations.
I count these last two distributions as probably

measurable now, hence count them among the M.
Two other features of transient pathways of differ-

entiation should also be measurable currently. In K ¼ 2
random Boolean nets, it is typical that there are multiple
perturbations to one state cycle attractor that lead, via
differentiation pathways, to the same target state cycle.
Now these multiple transients may all be distinct, or
some pairs or higher ordered sets may join in final
common state transition pathways to the destination cell
type. The distribution of numbers of transients that
remain distinct versus joining to create final common
pathways can be measured by perturbing synchronized
cell lines in various ways and using time series arrays to
measure the gene pathways engendered. In addition,
there will be a distribution of fractions of pathway
lengths where pathways join. This distribution can be
compared to real differentiation pathways. I do count
these among the M properties of interest.
Finally, I would note that most perturbations of

randomly chosen genes leave standard Boolean net-
works on states that return via some transient to the
same attractor, thereby exhibiting homeostasis. All the
questions and properties noted above for transients
between state cycle attractors can also be asked of
transients that return to the perturbed attractor. These
features are also among the M.

3.5. Functionally isolated ‘‘twinkling islands’’

The green islands of the ordered regime are deeply
interesting if real cells have both a frozen red percolating
component and such green twinkling islands. Such
islands are the paragraph structure of the genome. Each
island is functionally isolated from the other islands
because no signal of gene activity changes can propagate
between islands through the frozen red sea. Thus each
island has its own attractors. Say there are three islands,
one with two attractors, one with three attractors, and
one with four attractors. Then the whole network has
2� 3� 4 ¼ 24 total state cycles attractors, each com-
prised, Chinese menu-like, by one choice of two for the
first island, one of three for the second island and one of
four for the third island. This suggests a combinatorial
epigenetic code, and that the islands may be the major
developmental decision taking sub-circuits of the net-
work as a whole.
There are at least two ways currently available to test

for the existence, and size distribution of such islands.
The first uses mutual information between two genes at
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either the same or different times, (Harris et al., 2003).
The basic idea is that if genes are twinkling in the same
island they are likely to do so in a correlated way, while
if the genes are in different islands their twinkling should
not be correlated. This is measured by the mutual
information between two genes, which is the entropy of
the first gene plus the entropy of the second gene minus
their joint entropy. Note again that, using gene array
data from time series of synchronized cell lines, this
should be currently testable. Hopefully, we can find
genes with high mutual information, hence presumably
in the same island, and even evidence for the number
and distribution of island sizes. This is another of the M

properties we might use. A second approach to find
islands is to start avalanches. Such avalanches should
not propagate through the red frozen structure, but
should be limited to green twinkling islands and perhaps
the first ring or so of red genes surrounding an island.
Thus, the avalanches from two genes in the same island
are likely to share downstream genes in the same island,
but not affect genes in other islands. This provides
evidence for which genes are in which islands, as well as
evidence of causal connections between genes in the
avalanche that should, in principle, be open to experi-
mental test. Note again, that such avalanches are
currently testable by perturbing the activity of single
genes, and using gene arrays to measure avalanches and
gene membership in each avalanche, hence overlap of
gene membership in different avalanches. The existence,
number and size distribution of such islands are among
the M features we should use. Experimentally, measur-
ing mutual information in time series data across
thousands of genes should be feasible, although it
remains difficult to know how fine grained such a time
series should be and whether that rate of sampling is
feasible. Starting avalanches to look for overlapping
downstream gene activity alterations may be feasible
using pairs of genes known to be near neighbors in the
regulatory network. Both mutual information and
avalanches would seem to require synchronized cell
lines.

3.6. Changes of gene expression following deletion

mutations

Another property of interest is the size distribution
alterations in gene activities by deletion of single genes.
Serra et al. (2004), have used K ¼ 2 canalysing net-
works, carried out such an analysis, and find that they
can fit the distribution observed for several hundred
deletion mutants in yeast. Experimentally, the compar-
isons were made between normal and knock-out
asynchronous yeast cell populations using gene arrays.
Theoretically, Serra et al. set randomly chosen genes
to 0, mimicking a knockout, on one attractor, waited for
the network to settle to a new attractor in the mutant
network, and measured changes in gene expression
averaged around the old and new attractors. This
averaging is the natural match to asynchronous yeast
cells. This is the first case I know in which a distribution
predicted by an ensemble was tested and confirmed by
data from cells. This case is the exemplary instance of
the entire research program discussed here. Obviously,
this property is among the M that we should use.

3.7. Attractor time scales

I have not mentioned what was the first surprising
feature of the ordered versus chaotic regime. The
number of states on a state cycle in the chaotic regime
is an exponential function of N, the number of genes, so
soon becomes vast as N increases. For even small
networks and realistic times for gene activities to
change, it would take billions of times the history of
the universe to traverse the cycle, not a very attractive
model of a cell type. Rather stunningly, for K ¼ 2
networks, the median cycle length is a square root
function of the number of genes, N, (Kauffman, 1969,
1993). So if there are 30,000 genes, the typical cycle is
about 173 states long. If it takes 1–10min to turn a gene
on or off it would take 173–1730min to traverse the
cycle, a perfectly plausible biological time scale. I want
to stress how stunning I still find this result, which has
been confirmed analytically (Bastolia and Parisi, 1996).
As noted, 30,000 genes have a state space of 2 raised to
power 30,000, or 10 raised to power 10,000. Never-
theless, the system settles into tiny ‘‘black holes’’ of
attractors in state space. If we looked at a typical
network, its wiring diagram would be a mad scramble of
connections, and each gene is governed by a randomly
chosen Boolean function. Yet this order arises sponta-
neously in K ¼ 2 nets, and presumably in other nets in
the critical or ordered regime. Our intuitions about the
requirements for order have simply been wrong.
Results comparing this square root scaling law with

the obvious periodic behavior of cells, the lengths of cell
cycles in organisms as a function of their DNA per cell,
are interesting (Kauffman, 1969). The median cell cycle
time is about a square root function of total DNA. The
caveat of course, is that much of the DNA is junk DNA.
So the scaling law with respect to coding regions and cis

sites is steeper, but probably nothing like exponential.
This hints that cells are, indeed, in the ordered regime. It
has, as noted, recently been suggested (Gibbs, 2003) that
some of the junk DNA may code for RNA that plays a
regulatory role, so the total number of ‘‘genes’’ may be
far larger than the number of structural genes. The true
scaling law of cell cycle times as a function of the total
number of genes may be far slower than if only
structural genes are used. A proper ensemble should
predict the true scaling law, and the cell cycle distribu-
tion around the median as well. So I tentatively count
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this among the M features. This feature is not quite
testable now, for we do not know the total number of
‘‘genes’’ in cells.

3.8. Perturbing a fraction of input gene activities and the

histogram of perturbations of target genes

Kim et al. (2003), have carried out an early and
interesting comparison between random and scale free
Boolean nets. They picked nets of different N, and
different mean numbers of inputs, K. Then they picked
target genes, and transiently perturbed the activities of
fractions of the genes and obtained histograms for how
many times the target gene was perturbed in its activity.
The histograms differ between the two ensembles,
random and scale free. They then trained a neural net
on a subset of the data, and used it on the remaining
data to predict from the histograms whether each
histogram came from a scale free or a random Boolean
net. As they point out, the fact that they can typically
predict correctly may be related to the fact that the
neural network only classified networks as random or
scale free, with no finer details. In any case, the
histograms they describe are useful among the M

properties.
There are other features of different ensembles to

include among the M. For example, the wiring diagram
of regulatory interactions is a directed graph. The
statistics of indegrees and outdegrees of genes, taken
as nodes of the graph, differ dramatically in random
fixed or Poisson distributed K networks, scale free
networks with a power law distribution of indegree or
outdegree or both, small world, and medusa networks.
The data of Lee et al. (2002), on yeast suggest a
‘‘medusa’’ network, defined as a smallish head of genes
(about 150 transcription factors) that mutually regulate
one another, and an acyclic graph of thousands of genes
that are regulated, but not regulating. The right
ensemble should predict structural features such as the
in and out degree distribution of the genes, the
distribution of feedback loop lengths, the radius
distribution, the descent distribution, and other graph
features. Count these too among the M. Current
techniques, such as those used by Lee et al. (2002),
suggest that these structural properties can now be
investigated.
This completes a starting list of M testable features of

real cells, and the distributions of those features in
different ensembles, to create an M-dimensional space,
with clusters of points representing the distribution for
real cells and organisms, as well as for different
ensembles. The strategy would be to use neural nets or
other algorithms to measure which ensembles are closest
on all M features simultaneously to real cells, under the
unproven assumption that real networks from different
organisms belong to the same ensemble. Given that,
then the idea is to refine the good ensembles, using any
data that come to light as constraints the ensemble must
respect, plus pure guessing and intuition, to create
refined ensembles and hill climb towards the data of
real cells and organisms. I stress again that these M

properties are not the current typical observables sought
by molecular biologists, but they are valid, important,
and reveal global features of the structure and dynamics
of integrated genetic networks and are now largely
measurable.
I also stress that ensembles that match the M

properties measured in real cells and organisms will be
of use in a variety of ways. At a minimum, they are
null hypotheses concerning real networks, which selec-
tion may have further modified. The statistical features
of such ensembles, beyond the M, are hypotheses to
be tested, both to learn more about real cell networks,
and to further refine the ensemble. Further, the
ensemble approach, if successful, aids the attempt to
solve the inverse problem, for the ensemble statistical
features are constraints that reduce the search space
for solving the inverse problem. Finally, the ensemble
should provide insight, analytic and otherwise, into
the organizing principles that explain the generic
behaviors of ensemble members, hence, hopefully,
of cells.
4. Summary

I have suggested a new experimental approach to
study implications of ensembles of Boolean or other
regulatory networks. I propose that microarray tech-
nologies make possible the measurement of a consider-
able number of sophisticated dynamical features of real
genetic networks, features that can be compared to the
expectations from ensembles of theoretical networks
constructed according to varying design criteria. Those
ensembles that best conform to observed features could
then be refined to give better fits to the data. If a
network design can be found that fits reasonably well
the experimental data set, then it may be that the genetic
networks within real cells and organisms are members of
that particular ensemble. It is an hypothesis that can and
should be tested. Finally, the statistical features of
successful ensembles can narrow the search space in the
attempts to solve the inverse problem deducing network
features from microarray and other data.
This article commemorates my dear friend, Art

Winfree, with whom I shared my early career at the
University of Chicago. Art was a brilliant scientist who
devoted most of his work to the study of oscillatory
phenomena, such as the eclosion rhythm in Drosophila
melanogaster, and scroll waves in the BZ reaction, as
well as cardiac phenomena. I admired him very much.
He will be missed.
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