
 1 

Getting Something Out of Nothing: Implications 

for a Future Information Theory Based on Vacuum 

Microtopology1
 

 

William Michael Kallfelz
2
 

Committee for Philosophy and the Sciences 

University of Maryland at College Park 

 

Abstract 
(word count: 194) 

Submitted October 3, 2005 

Published in IANANO Conference Proceedings: October 31-November 4, 2005
3
 

 

Contemporary theoretical physicists H. S. Green and David R. Finkelstein have 

recently advanced theories depicting space-time as a singular limit, or condensate, 

formed from fundamentally quantum micro topological units of information, or process 

(denoted respectively by ‘qubits,’ or ‘chronons.’)  H. S. Green (2000) characterizes the 

manifold of space-time as a parafermionic statistical algebra generated fundamentally by 

qubits.  David Finkelstein (2004a-c) models the space-time manifold as singular limit of a 

regular structure represented by a Clifford algebra, whose generators αγ represent 

‘chronons,’ i.e., elementary quantum processes.  Both of these theories are in principle 

experimentally testable.  Green writes that his parafermionic embeddings “hav[e] an 

important advantage over their classical counterparts [in] that they have a direct physical 

interpretation and their parameters are in principle observable.” (166)  David Finkelstein 

discusses in detail unique empirical ramifications of his theory in (2004b,c) which most 

notably include the removal of quantum field-theoretic divergences.  Since the work of 

Shannon and Hawking, associations with entropy, information, and gravity emerged in 

the study of Hawking radiation.  Nowadays, the theories of Green and Finkelstein suggest 

that the study of space-time lies in the development of technologies better able to probe 

its microtopology in controlled laboratory conditions. 
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I.  Introduction 

According to Herbert Sydney Green (2000), the role played by quantum theory 

with respect to information theory is anticipated in the following passage: 

In the early years of the development of the quantized theories, the principal 

innovation was that the field variables were treated as matrices, but it also became 

important to derive the differential equations from the Principle of Least Action in 

order to obtain an unambiguous formulation of the commutation relations satisfied by 

the matrices.  The present approach to quantized field theory…is more strongly 

influenced by information theory.  As a consequence of quantization, a field is 

ultimately interpreted as providing a representation of the transmission of 

information through particles of the same type but possibly different momenta.  

(italics added, 116) 

 

Green presents a unified theory, comprising all areas of field theory and gravitation, on 

the one hand, to the biophysics of neurophysiology and brain research, on the other, 

based fundamentally on an extended notion of the qubit.  Of primary interest here is to 

investigate how the space-time manifold is constituted fundamentally by such units of 

information, described in his theory in terms of embeddings in a parafermionic algebra.  

These parafermionic embeddings “have a direct physical interpretation and their 

parameters are in principle observable.” (166)  

 In a closely parallel fashion, David Finkelstein (2001, 2004a-c) models the space-

time manifold as a singular limit of a regular structure represented by a Clifford algebra, 

whose generators αγ represent ‘chronons,’ or elementary quantum processes.  His latest 

research is part of an ongoing development originating in the Space-Time Code papers 

(1969), which, like in the case of Green, formed the basis of an “attempt to express field 

theory in terms of q bits or chronons.” (2001, 9).  Finkelstein (2004b,c) presents some 

potentially observable consequences of his theory. 
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I will discuss the ramifications of the above theories, which share the ontological 

intuition of conceiving space-time itself as fundamentally generated or derived from an 

underlying microtopology of fundamental quantum processes of information.  The 

empirical tests discussed by Green and Finkelstein raise compelling questions for future 

information-based technologies.  Prior to doing so, however, key aspects of Green and 

Finkelstein’s theories must be brought to light. 

 

II.  H.S. Green’s Extended Qubits and Parafermionic Embeddings 

 

An extended qubit is represented by a class of matrices M ⊆⊆⊆⊆ C
2
 

(4)
 obeying 

unipotency and unit trace:  

Defn. (Extended Qubit) For any M∈ M:  (a) M
 2

 = M and  (b) tr[M] = 1.  

Expressed component-wise: 

  

(a) ijkj

N

k

ik MMM =∑
=1

  (b) 1
1

=∑
=

N

k

kkM , where N = dim(M) ≥ 2.
5
 

 

The solutions to constraints (a) & (b) partition M into the equivalence classes of 

Hermitian
6
, pseudo-Hermitian

7
, and real-valued matrices

8
.  These three classes represent 

three different kinds of qubits.  These kinds are characterized physically by the 

representation of information in ordinary QM (in the inertial frame of the observer), 

                                                 
(4)

 C
2
 of course is the Hilbert Space: C

 × C, where: C is the complex numbers. 
5
 There are cases of course when the dimension exceeds 2 (for example, in the case of Dirac gamma 

matrices of dimension 4.)  Though the number of independent parameters characterizing the qubit remains 

invariant and independent of its particular representation in any given full matrix algebra.. 
6
 I.e., any matrix A where: Ajk

*
 = Akj (the complex conjugate of A = the  transpose of  A.) 

7
 I.e., any matrix A such that,  corresponding to A is another (Hermitian) matrix C which is idempotent (C

2
 

= Id) and CA is Hermitian. 
8
 I.e., A ∈ R

2
. 
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information adopted in other inertial frames, and information derived from distant 

sources. (34)   

The first (Hermitian) class is what one normally thinks of as a qubit in standard 

QM since it has the typical Pauli spinor representation:  Q(ξ) = 
1
/2{Id + ξξξξ•σσσσ} (where: Id 

is the 2 × 2 identity matrix,  ξ is a 3D spatial vector of unit norm, and ξξξξ•σσσσ is its expansion 

in the Pauli matrix basis
9
.)  Since the relativity group

10
 of standard QM is Galilean, it 

makes sense to think of Q(ξ) as representing information in the observer’s ‘proper’ 

inertial frame of reference (IFR). 

The second anti-Hermitian class, on the other hand, extends to applications in 

special relativity, ascribed by Green as the interpretation of a qubit in quantum field 

theory (i.e., Lorenz-invariant QM.)  Such a qubit has representation:   

Q(ω) = 
1
/2{Id + ωωωω•ρρρρ}  (where: ωωωω•ρρρρ = ω0ρ0  - ω1ρ1  -  ω2ρ2 and ω0

2
 - ω1

2
 - ω2

2
  = 1 and the 

matrices  ρ1, ρ2  are anti-Hermitian.)  In locally flat space-time, the Lorentz Group 

describes how two or more IFRs transform, hence Q(ω) represents information adopted 

on different IFRs from that of the observer.  

The third (real) class is found in applications in curved space-time (in particular, 

deSitter Space) denoted as a space-like qubit.
11

  Though deSitter space (projectively) 

contains all significant cases of flat space-times, the instances involving use of 

                                                 
9
 ξξξξ••••σσσσ = ξ1σ1 + ξ2σ2 + ξ3σ3  where the subscripts 1,2,3 refer, of course, to the x, y, z components of ξξξξ and 

Pauli matrix σ , respectively.    
10

 The group of all dynamical symmetries invariant under Galilean transformations. 
11

 DeSitter space is a topologically closed and spherically symmetric manifold which can be conveniently 

thought of in terms of a four-dimensional projective geometry.  Its one-dimensional closed subspaces of  

rays of infinite extent describe timelike trajectories in the space, while its curved 3D subspaces are of finite 

radius R and describe the closure of set of all spacelike separated points. Q(η) co-vary with respect to 

transports of points in such space-like 3D ‘great circles’, hence their space-like association.  In the R→ ∞ 

limit deSitter space becomes the Minkowski space-time of special relativity.  
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Riemannian geometry in general relativity don’t apply.
12

  Such a qubit has representation:  

Q(η) = 
1
/2{Id + ηηηη•ττττ}  (where: ηηηη•ττττ = -η0τ0  + η1τ1  +η2τ2 and -η0

2
 +η1

2
 + η2

2
  = 1 and the 

matrices  τ1, τ2  are anti-Hermitian.)  DeSitter space, for extremely long ranges, (i.e. for 

deSitter radius R ≈ intergalactic distances) provides the simplest approximation to the 

global properties of a dynamically varying metric gµν(x) described in general relativity.  

Hence Q(η) represents information derived from distant sources. 

Introducing his parafermion representation of Lie algebras, the statistical 

machinery governing how qubits combine, the impetus of constructing such a statistics is 

guided the intuition that a space-time point (x
µ
) should be interpreted as an event wherein 

a neutral particle is emitted or absorbed.  Emission and absorption, represented by 

respective parafermion elements ς0, ς, while the particle’s geodesic path can be 

represented projectively by the join: x
µ
(ς0)∨x

/µ
(ς), where x, x

/
 are the space-time points 

corresponding to detection/absorption events.(147)  Then, the manifold of space-time 

itself may be characterized in terms of a parafermionic statistical algebra Σ 

fundamentally generated by qubits.
13

  Green describes this procedure as ‘quantal 

embedding.’  In one case he succeeds in embedding Riemannian geometry
14

 into Σ 

wherein the metric, for example, takes on the form: 

( ) ( )r
s

r

r
g νµµν ςς ⊗≡∑

=

2

1

     (II.1) 

                                                 
12

 Green takes up the general relativistic case in chapter 7. 
13

 “The quantum mechanics of systems with large numbers of interacting particles…can be given a 

formulation in which the elements…are represented by fermions or parafermions, and thus in terms of 

qubits.” (108, italics added) 
14

 “The quantal embedding of the Riemannian space [has] ‘coordinates’ of the embedding space [which] 

are…parameters of the group of transformations connecting different ς0 , ς.” (163) 
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where: νµ ςς , ∈Σ, dimΣ = 2s, and the bar superscript denotes the Majorana 

adjoint. 

 

Green describes his quantal embeddings as having a direct physical interpretation 

which make their parameters observable, in principle. (166)  For instance, the geodesics 

x
µ
(ς0)∨x

/µ
(ς) apply to the trajectories of neutral particle propagation, whether photons or 

neutrinos.  “[I]t is not clear that a physical geometry constructed from the observation of 

neutrinos would be the same as that derived from the observation of light, but an 

informationally based theory could well provide…indication of differences which in the 

future could be detected experimentally.” (147)    

 

III.  Finkelstein’s Chronons and their Clifford Algebraic Characterizations 

 Finkelstein (1996, 2001, 2004a-c) presents a unification of field theories 

(quantum and classical) and space-time theory based fundamentally on finite dimensional 

algebraic structures, and on a regularization procedure fundamentally involving group-

theoretic simplification.
15

  The choice of the Clifford Algebra
16

 is motivated by two 

fundamental reasons: 

                                                 
15

 I.e., expanding into a group with no invariant subgroups, which among other things stabilizes its Lie 

algebras.  This technique of simplification and regularization has its origins in the work of Inonou & 

Wigner (1952) and I. E. Segal (1951).  For instance, Inonu and Wigner show that in the expansion from the 

(non-simple) Galilean group to the (simple) Lorenz group, the latter’s Lie algebra is stable, while the 

former is not.  These powerful techniques of simplification and regularization can be viewed as necessary 

criteria for fundamental physical theories, present and future.  Regularization cures theories of pathological 

singularities.  “Segal…stimulate[s] the present work…which seem to lead… to a finite quantum theory and 

a quantum space-time, goals of some physicists since the formation of quantum theory.  They produce a 

theory with a simple group, having the prior theory as a limiting case and having nearly the same 

continuous symmetries.” (2001, 2)  
16

 The topic of Clifford algebras and their applications has enjoyed widespread attention in mathematical 

physics, (Bolinder (1987)).  Aside from reasons 1.) and 2.) mentioned above, which are motivated by 

specifically physical notions, there are the metatheoretic features of regularization, group simplicity, and 

Lie algebraic stability that motivates Finkelstein’s research program in its selection of Clifford algebras.  
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1. The typically abstract (adjoint-based) algebraic characterizations of quantum 

dynamics (whether C*, Heisenberg, etc.) just represent how actions can be 

combined (in series, parallel, or reversed) but omit space-time fine structure.
17

  

On the other hand, a Clifford algebra can express a quantum space-time. (2001, 

5)    

 

2. Clifford statistics
18

 for chronons adequately expresses the distinguishability of 

events as well as the existence of half-integer spin. (2001, 7) 

 

The first reason entails that the prime variable is not the space-time field, as 

Einstein stipulated, but rather the dynamical law.  That is to say, “the dynamical law [is] 

the only dependent variable, on which all others depend.
19

” (2001, 6)  The “atomic” 

quantum dynamical unit (represented by a generator αγ  of a Clifford algebra) is the 

chronon χ, with a closest classical analogue being the tangent or cotangent vector, 

(forming an 8-dimensional manifold) and not the space-time point (forming a 4-

dimensional manifold).    

Applying Clifford statistics to dynamics is achieved via the (category) functors 

ENDO, SQ which map the mode space
20

 Χ of the chronon χ, to its operator algebra (the 

algebra of endomorphisms A on X) and to its spinor space S (the statistical composite of 

all chronons transpiring in some experimental region.) (2001, 10).  The action of  ENDO, 

SQ producing the Clifford algebra CLIFF, representing the global dynamics of the chronon 

ensemble is depicted in the following commutative diagram: 

                                                                                                                                                 
There exist a variety of different axiomatic characterizations of Clifford algebra, Finkelstein’s is most 

heavily reliant on Hestenes and Sobczyk’s (1984) treatment.  
17

 The space-time structure must are supplied by classical structures, prior to the definition of the dynamical 

algebra. (2001, 5) 
18

 I.e., the simplest statistics supporting a 2-valued representation of  SN, the symmetry group on N objects. 
19

 This comprises a general and central notion in Finkelstein’s research, what he terms as “praxism,” in 

contrast with “ontism.”  A praxic characterization begins with a notion of elementary actions and 

dynamical law, showing that a notion of “state” is derivative.  Ontism works in the opposite direction, 

taking state as the primitive and deriving elementary dynamics in terms of mappings between states.  For a 

detailed discussion, see chapters 1 – 4 in Finkelstein (1996.) 
20

 The mode space is a kinematic notion, describing the set of all possible modes for a chronon χ, the way a 

state space describe the set of all possible states for a state ϕ in ordinary quantum mechanics. 
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   ENDO 

X   A = ENDO(X) 
    SQ        SQ   

   S 
ENDO

  CLIFF   

 

 Analogous to Green’s embedding of the space-time geometry into a 

paraferminionic algebra of qubits,  Finkelstein shows that a Clifford statistical ensemble 

of chronons can factor as a Maxwell-Boltzmann ensemble of Clifford subalgebras.  This 

in turn becomes a Bose-Einstein aggregate in the N → ∞ limit (where N is the number of 

factors.)  This Bose-Einstein aggregate condenses into an 8-dimensional symplectic 

manifold M which is isomorphic to the tangent bundle of space-time.  Moreover, M is a 

Clifford manifold, i.e. a manifold provided with a Clifford ring: 

( ) ( ) ( ) ( )MCMCMCMC N⊕⊕⊕= K10  (where: C0(M), C1(M),…,CN(M) represent the 

scalars, vectors,…, N-vectors on the manifold.)  For any tangent vectors γµ
(x),  γν

(x) on 

(Lie algebra dM) then: 

         γµ
(x) ° γ

ν
(x) = g

µν
(x)     (III.1) 

where: °  is the scalar product. (2004, 43)  Hence the space-time manifold is a singular 

limit of the Clifford algebra representing the global dynamics of the chronons in an 

experimental region. 

 Observable consequences of the theory are discussed in the model of the oscillator 

(2004c).  Since the dynamical oscillator undergirds much of the framework of 

contemporary quantum theory, especially quantum field theory, the (generalized) model 

oscillator constructed via group simplification and regularization is isomorphic to a 

dipole rotator in the orthogonal group O(6N) (where: N = l(l + 1) >> 1).  In other words, a 

finite quantum mechanical oscillator results, bypassing the ultraviolet and infrared 
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divergences that occur in the case of the standard (infinite dimensional) oscillator applied 

to quantum field theory.  In place of these divergences, are “soft” and “hard” cases, 

respectively representing maximum potential energy unable to excite one quantum of 

momentum, and maximum kinetic energy being unable to excite one quantum of 

position.  “These [cases]…resemble [and] extend the original ones by which Planck 

obtained a finite thermal distribution of cavity radiation.  Even the 0-point energy of a 

similarly regularized field theory will be finite, and can therefore be physical.” (2004c, 

12)   

In addition, such potentially observable extreme cases modifies high and low 

energy physics, as “the simplest regularization leads to interactions between the 

previously uncoupled excitation quanta of the oscillator…strongly attractive for soft or 

hard quanta.” (2004c, 19)  Since the oscillator model quantizes and unifies time, energy, 

space, and momentum, on the scale of the Planck power (10
51

 W) time and energy can be 

interconverted.   

Moreover, in such extreme cases, equipartition and Heisenberg Uncertainty is 

violated.  The uncertainty relation for the soft and hard oscillators read, respectively:  

( ) ( )
2

0
4

0
2

3

2
2

2

2

1 1

hh
<<∆∆⇒≈≥∆∆ ≈ qpLLL L    (III.2) 

( ) ( )
2

0
4

02
2

3

2
2

2

2

1

hh
<<∆∆⇒≈≥∆∆ ≈ qpLLL L    (III.3) 

 

IV.  Discussion 

 Both Green and Finkelstein present theories depicting space-time as a contraction 

of a fundamentally operationally characterized network of units of process or 
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information, on a nanoscale.  What are some of the ramifications for a future information 

theory resulting in potentially feasible technological applications?   

 Consider Finkelstein’s finite harmonic oscillator.  In the extreme cases where 

ordinary quantum field theory fails --in the infrared and ultraviolet cases--the ‘hard’ and 

‘soft’ oscillators instead “cheat” the Heisenberg uncertainty relations.  Hence, similar to 

the case of squeezed states of EM radiation,
21

 manipulations of quanta on that scale in 

these cases can likewise be hypothetically performed with no theoretical bound to their 

accuracy.  In addition, the energy required for such transactions could be provided by the 

time-energy conversion at the Planck power scale. 

In the case of H. S. Green, his extended qubits comprise the very essence of 

space-time.  Recall that “an informationally based theory could well provide…indication 

of differences [between photon and neutrino-based physical geometries] which in the 

future could be detected experimentally.” (2000,147)  The question then becomes: if a 

field represents the transmission of information, how accessible is such information at the 

nanoscale?   

In an intriguing application in quantum optics and information theory, Asher 

Peres and Daniel Terno (2004) seem to substantiate Green’s notions, as they work out the 

effective density matrix for a monochromatic signal consisting of a single photon.
22

  For 

a Fourier decomposition, the Cartesian components of the photon’s wave 4-vector kµ  can 

                                                 
21

 I.e. coherent states |α,s〉 with an additional degree of freedom (the ‘squeezing’ parameter s) resulting in 

violations of Heisenberg Uncertainty. 
 
22

 “When we consider individual photons, for cryptographic applications…quantum theory becomes 

essential.  The diffraction effects…lead to superselection rules which make it impossible to define a 

reduced density matrix for polarization. [However]…it is still possible to have effective density 

matrices…[which] depend on the preparation process, [and] also on the method of detection that is used by 

the observer.” (Peres & Terno, 2004, 16) 
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be expressed in terms of spherical polar angles (θ,φ ):  kµ  = (1,sinθcosφ, sinθsinφ, cosθ).  

Then, when considering the effect of the motion of a detector propagating with constant 

velocity v = (0,0,v) for small θ  (when θ 
2
 << |v|) its Lorentz-transformed component in 

the detector frame reduces to:    

v

v

−

+
=′

1

1
θθ          (IV.1)  

 

This is the same Doppler factor derived by Jarrett & Cover (1981), absent any specific 

physical model, for the relativistic transformation of bit rate and noise intensity.  “This 

remarkable agreement shows that information theory should properly be considered as a 

branch of physics.” (Peres & Terno (2004), 16) 

 Peres and Terno, in fact, are also motivated by the belief in the inseparability of 

the disciplines of relativity theory, quantum theory, and information theory. (2004, 3)  

Contrary to the theories of Green and Finkelstein, however, (proceeding “top down” from 

abstract mathematical considerations) Peres and Terno work “bottom up” from a 

POVM
23

 formalism modeling actual experimental processes of detector emission and 

absorption.  They carry out their results with a fundamentally algebraic approach to field 

theory, as a means of solving some of the difficulties associated with the predictions 

depending upon specific methods of calculation, when working with different PVMs in 

curved space-time.
24

   Hence, the theoretical entities in Green and Finkelstein’s theories 

                                                 
23

 Positive operator valued measure 
24

 “One of the difficulties of QFT in curved space-times is the absence of a unique (or preferred) Hilbert 

space…[since] different representations of canonical commutation or anticommutation relations lead to 

unitarily inequivalent representations.” (Peres & Terno, 2004, p.24).   
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can be characterized in Peres and Terno, via respective algebraic homomorphisms.  This 

constitutes the first step toward a future information theory of vacuum microtopology. 

 

V. Conclusion    

The empirical tests discussed by Green and Finkelstein, vis-à-vis the POVM 

detector formalism of Peres and Terno raise compelling questions for future information-

based technologies.  Since the work of Shannon and Hawking in the fifties and sixties, 

compelling associations among entropy, information, and gravity emerged in the study of 

Hawking radiation.  Nowadays, however, the theories of Green and Finkelstein together 

suggest that the study of space-time may not end at the edge of a black hole’s event 

horizon, but begin in the development of technologies better able to probe its 

microtopology in controlled laboratory conditions. 
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