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Synopsis Synopsis Tails are a defining characteristic of chordates and show enormous diversity in function and shape.

Although chordate tails share a common evolutionary and genetic-developmental origin, tails are extremely versatile in

morphology and function. For example, tails can be short or long, thin or thick, and feathered or spiked, and they can

be used for propulsion, communication, or balancing, and they mediate in predator–prey outcomes. Depending on the

species of animal the tail is attached to, it can have extraordinarily multi-functional purposes. Despite its morphological

diversity and broad functional roles, tails have not received similar scientific attention as, for example, the paired

appendages such as legs or fins. This forward-looking review article is a first step toward interdisciplinary scientific

synthesis in tail research. We discuss the importance of tail research in relation to five topics: (1) evolution and

development, (2) regeneration, (3) functional morphology, (4) sensorimotor control, and (5) computational and physical

models. Within each of these areas, we highlight areas of research and combinations of long-standing and new exper-

imental approaches to move the field of tail research forward. To best advance a holistic understanding of tail evolution

and function, it is imperative to embrace an interdisciplinary approach, re-integrating traditionally siloed fields around

discussions on tail-related research.

Introduction

Although the post-anal tail is considered a defining

chordate characteristic, tails are also present in taxa

outside of this phylum. Tails have extraordinarily

diverse functions, including, but not limited to use

as a fifth limb, as a visual signal for warning and

courtship, and as an essential physiological and mor-

phological driver for functions related to propulsion,

stability and maneuverability, prehension, energy

storage, and thermoregulation (Wake and Dresner

1967; Aleksiuk 1970; Lindsey 1978; Fish 1979, 1982;

Hickman 1979; Tucker 1992; Thomas 1997; Patel et
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al. 2016). In other words, the tail plays multiple roles

critical to many animals’ survival. Such multifunc-

tionality of the tail has captured the imagination of

engineers and roboticists, leading to remarkable

advances in the development of versatile bio-

inspired robotic systems (Kopman et al. 2015; Patel

and Boje 2015; Saab et al. 2018; Zhu et al. 2019; Fish

2020).

Despite its apparent importance, tails are vastly

understudied. For example, we still have little under-

standing for why tails are conserved, reduced, or lost

in certain lineages; or why analogous structures exist

among invertebrates. Likewise, developmental path-

ways and regenerative mechanisms of tails are only

recently gaining greater attention. Within biome-

chanics research, the tail is often ignored, with a

greater focus toward paired appendage function.

Yet, tails precede the evolution of paired appendages

by ~200 million years (Donoghue and Keating 2014).

As such, increasing our understanding of tail func-

tion, development, and evolution may provide valu-

able insight into the physiological costs and benefits

of also using paired appendages, as well as how the

holistic coordination of multiple appendage types—a

concept common to fish swimming research but not

elsewhere—enables smooth motion. Research on tails

continues in a broad range of fields, from

Evolutionary Developmental Biology (EvoDevo) to

behavior to robotics, but these fields remain largely

isolated from one another; yet there is immense con-

ceptual overlap among these fields that have trans-

formative potential if collaboration was more

common. It is therefore imperative that we re-

integrate these fields to fully capture the complexity

and diversity of tails from an interdisciplinary

viewpoint.

With this forward-looking perspective paper, we

aim to cross boundaries between research fields,

summarize what is known, and highlight exciting

future tail research directions with the hope of in-

spiring greater interdisciplinary discourse. Here we

outline five key areas to deepen and broaden our

knowledge on the breath of tail and tail-related

topics. We discuss the current state of the field in-

cluding knowledge gaps, potential areas for future

studies, and interdisciplinary research approaches in

(1) evolution and development, (2) regeneration, (3)

functional morphology, (4) sensorimotor control,

and (5) computational and physical models.

Evolution and development

Although the notochord is a homologous structure

across chordates and an integral part of post-anal

tails, questions remain about the homology of skel-

etal tail structures. A clear definition of what com-

prises the tail is surprisingly elusive. If we define the

tail as the “post-anal extension of the body axis,”

that creates a predicament since that definition in

fishes would include parts of the dorsal fin and the

anal and caudal fin as part of the tail. Developmental

processes may provide some clarity, as there is evi-

dence pointing toward unique genetic modules that

individually control the development of these un-

paired fins (Letelier et al. 2018). Thus, we should

not lump all fins together as part of the tail. Sallan

(2016) proposes that the fish caudal region is actu-

ally a combination of two components: (1) the cau-

dal fin and (2) the “tail,” defined as the post-

vertebral notochord extension. This theory further

postulates that differential outgrowth of these two

structures generated the variation in the caudal re-

gion across fishes, including tetrapods (Sallan 2016).

Moving forward, a careful examination of the gene

regulatory networks (GRNs) controlling the develop-

ment of these individual components of the post-

anal caudal region will thus be necessary to evaluate

homologies among chordate and vertebrate tails.

Compared with caudal structures, paired appen-

dages that led to the origin of tetrapods have re-

ceived a lot more attention in EvoDevo research.

When anatomy alone was not enough to determine

homology between the structure of the paired pec-

toral and pelvic fins in fishes and tetrapod fore and

hindlimbs, development of molecular techniques

allowed deep genomic homologies to be drawn be-

tween paired fins and limbs (Shubin et al. 1997;

Mercader 2007; Yano and Tamura 2013; Gehrke

and Shubin 2016). Similar use of genetic techniques

could provide missing links in determining homolo-

gies among chordate tail structures. Analyzing devel-

opmental GRNs in the evolutionarily old caudal

region may also shed light on the evolutionary origin

of the younger paired appendages that first emerged

in an ancestor of jawed vertebrates, potentially by

co-opting genetic programs from other body appen-

dages such as tails.

There are three key GRN components known to

be involved in tail development across chordates:

Homeobox (Hox) and T-box transcription factor

genes, as well as Hedgehog signaling genes.

However, large gaps still exist in our understanding

of tail-specific regulatory landscapes. Here, we high-

light what is already known about expression and

control of these genes in relation to tail Evo-Devo

and point out what is yet to be understood.

Hox genes in most vertebrates are organized into

four duplicated (paralogous) clusters (Hox A, B, C,
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and D). Together, these pattern the antero-posterior

body plan and the proximo-distal axis of paired

appendages in the developing embryo (reviewed in,

e.g., Burke et al. 1995; Duboule 1998; Holland 2013).

Gene order along the chromosome reflects expres-

sion order along the body axis; the first Hox genes

are expressed in the anterior of the embryo, and the

last Hox genes are expressed in the most posterior

regions of the embryo as well as the most distal ends

of the fin/limb bud. In paired fins/limbs, only Hox A

and Hox D cluster genes are expressed in limbs in

vertebrates (Freitas et al. 2012; Tulenko et al. 2016;

Longellato et al. 2018; Desanlis et al. 2020). We still

lack an understanding of how the posterior Hox

genes are expressed and regulated during caudal de-

velopment across vertebrates. It has become clear

that posterior genes of paralogy groups Hox 9–13

are expressed in post-anal tails of all chordates as

well as in hemichordates (Fodor et al. 2021). Most

of our current knowledge comes from mouse mod-

els, which suggest a major role for posterior Hox B

and Hox C cluster genes in tail development

(Economides et al. 2003; Aires et al. 2019).

The key notochord gene brachyury (bra), generally

known as Tbxt, is essential for chordate tail develop-

ment. This is referred to by many names: bra in

tunicates, T in mouse, Xbra in frog, and no tail

(ntl) in fishes. This gene was present as one copy

in early chordates. Two paralogous copies (Tbxta,

Tbxtb) appeared during the early two rounds of ver-

tebrate genome duplication, before one of these two

paralogs (Tbxta) was secondarily lost again in the

tetrapod common ancestor (Amemiya et al. 2013).

The expression pattern of Tbxt genes in the noto-

chord and the tail bud is conserved across chordates

(Hermann 1995; Corbo et al. 1997; Thisse 2001).

Loss of function of Tbxt genes leads to complete

loss of tail in zebrafish and incomplete tail develop-

ment in mice (Wilson et al. 1993; Schulte-Merker

1995). In zebrafish tail development, tbxta and tbxtb

are required for expression of Wnt signaling genes

during posterior mesoderm formation (Martin and

Kimelman 2008). A recent study shows that although

bra has been considered a master regulator of noto-

chord development, bra alone is not sufficient to

regulate notochord development in Ciona, highlight-

ing the importance of further research into under-

standing the chordate tail GRN (Reeves et al. 2021).

In the Hedgehog signaling pathway, the vertebrate

ligand gene sonic hedgehog (shh) plays many roles

during development, one of which is establishing

the Zone of Polarizing Activity (ZPA) that patterns

fin and limb development (Gehrke and Shubin

2016). Its expression in the paired fin/limb is

regulated by the ZPA regulatory sequence enhancer

and in fish, a similar enhancer has been found to

specify shh expression during the development of the

unpaired dorsal fin (Letelier et al. 2018). The vital

role of shh in paired and unpaired appendage devel-

opment in fishes suggests that it could also play an

important, yet elusive, role in fish tail development

(Hadzhiev et al. 2007). Hedgehog signaling has been

implicated in tail development in zebrafish

(Hadzhiev et al. 2007), and loss of shh signaling in

mouse models leads to abnormal tails (El Shahawy et

al. 2019), but the specific involvement of this path-

way in vertebrate caudal development has yet to be

determined. Hedgehog signaling does not seem to be

involved in tail development in ascidians, but does

play a role in amphioxus. More work is thus neces-

sary to understand the evolution of Hedgehog sig-

naling in chordate caudal development (Di Gregorio

2020).

There is considerable overlap in gene expression in

the tail and the paired appendages. However, this

overlap is not necessarily an indication of a co-

option, perhaps it is an indication of common pro-

cesses (e.g., the similarity between posterior and dis-

tal axis extension). Despite the obvious similarities in

gene expression, such as posterior Hox gene expres-

sion, few studies have focused on the possible caudal

origin hypothesis: that the paired appendages are a

co-option of GRNs specifying the posterior body axis

(Shubin et al. 1997). There are several other compet-

ing hypotheses that the paired appendages and their

GRNs originated from (1) the gills, (2) a hypothet-

ical lateral fin fold, or (3) the median unpaired fins

(dorsal and anal fin). No single hypothesis stands

out because there are data supporting all of them

(Abe and Ota 2017; Letelier et al. 2018) and some

have hypothesized a combination of these origins

(Diogo 2020; Sleight and Gillis 2020).

Understanding the genes that pattern the non-

vertebrate chordate tail compared with those that

pattern the vertebrate tail as well as the vertebrate

fin/limb will elucidate whether the tail really is the

“first fin” and help answer a longstanding question

that has interested scientists for over a century.

Although the post-anal tail is a key characteristic

of chordates, the tail has also been reduced or sec-

ondarily lost in many lineages, as exemplified in

birds and in the absence of a great ape tail. It is

possible that a thorough investigation of instances

of tail loss across chordate evolution would help us

understand human tail loss, as well as other cases of

tail reduction or loss among vertebrates (e.g., in

frogs and birds). Different from ancestral, multi-

segmented vertebrate tails, birds have fused caudal
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vertebrae that form pygostyles, which support tail

feathers important for maneuvering during flight.

Development of these pygostyles only happens after

hatching (Rashid et al. 2018), indicating that birds

retain the ancestral tail morphology in-ovo. In all

cases of vertebrate tail loss, the tail is present

throughout embryonic/larval development, but then

is lost during development into the adult form—as

can be seen among frogs and humans. Extending to

non-vertebrate chordates, tunicates generally follow

this pattern as well: the embryonic tail is lost upon

reaching adulthood. However, there are some ascid-

ian tunicates that have also lost the embryonic tail.

Understanding the evolutionary and developmental

processes that have led to instances of tail loss or

tail vertebrae fusion across chordates could lead to

a comprehensive study that encompasses the com-

parison of tail loss across many examples in chordate

evolution.

Regeneration

Among some vertebrates, the tail demonstrates an

unusual capacity for wound repair and regeneration

(Bellairs and Bryant 1985; Higham et al. 2013;

Jacyniak et al. 2017; Gordeev et al. 2020; Verissimo

et al. 2020; Xu et al. 2020). Instead of scarring, these

species are able to spontaneously regrow a replace-

ment. Regeneration begins as an aggregation of pro-

liferating cells called a blastema. Blastema cells

eventually give rise to most new tail tissues.

Although blastema-mediated regeneration is also as-

sociated with paired appendage regrowth among

some anamniotes, the tail is the only appendage ca-

pable of regenerating in amniotes. Further, unlike

the limbs, the tail (in various species of plethodontid

salamanders and lepidosaurs) can be self-amputated

or autotomized—an anti-predation mechanism that

permits the controlled release of a portion of the tail.

Once released, the detached tail will thrash, thereby

providing a distraction as the prey escapes. It is

worth noting, however, that while tail autotomy is

often paired with tail regeneration, the two mecha-

nisms are independent of one-another. More specif-

ically, while some species capable of tail autotomy

are incapable of tail regeneration (e.g., some snakes

and amphisbaenians), other species that do not au-

totomize are capable of tail regeneration (e.g., teleost

fish, non-plethodontid– and some plethodontid-

salamanders, tadpoles, and crocodylians).

While tail regeneration recreates the overall shape

and function of the original appendage, the fidelity

of the replacement often varies. Whereas zebrafish

and salamanders effectively replicate the pattern

and structure of the amputated tail, reptiles do

not. For example, leopard geckos primarily regener-

ate autotomized tails through cartilage and fat

deposits, retaining a key function for fat storage,

and are morphologically simple relative to their orig-

inal counterparts (Gilbert et al. 2013). Among liz-

ards, the loss in fidelity is most readily observed in

the spinal cord (regenerated spinal cords lack gray

matter), skeleton (bony vertebrae are replaced by a

hollow cone of cartilage), skin (variation in the pat-

tern of scalation), and a simplified musculoskeletal

arrangement. The regenerated tails of Sphenodon and

crocodylians are even less exact replacements, com-

posed largely of a cartilaginous cone surrounded by

connective tissue with limited skeletal muscle.

The amount of physiological energy and resources

that are diverted into regenerating a lost tail is often

indicative of their importance. Organisms that rely

on tails for functional roles such as locomotion, anti-

predation, and fat storage are predicted to suffer re-

duced fitness following autotomy (Barr et al. 2019;

Triay-Portella et al. 2019). As such, energy that is

allotted to maintaining regular body functioning

may be funneled into caudal tissue regeneration,

sometimes through multiple tail regeneration events

in a lifetime (each loss occurs progressively closer to

the tail base), or even “re-regeneration” of the exact

same tail region (Barr et al. 2019). Energy allocation

strategies between tail regeneration and reproduction

vary among species and even between sex within a

species (Dial and Fitzpatrick 1981; Salvador et al.

1995; Fox et al. 1998; Yurewicz and Wilbur 2004;

Triay-Portella et al. 2019). Alternatively, birds use

tail feather autotomy and regeneration as anti-

predator strategy, which is found to be physiologi-

cally inexpensive and does not affect flight perfor-

mance (Møller et al. 2006; Johansson and

Hedenstrom 2009). These suggest an evolutionary

cost–benefit approach to the facilitation of tail regen-

eration, and a hierarchy of energy allocation accord-

ing to different pressures, potentially explaining why

some species may not be capable of tail regeneration,

or “choose” to suppress this capability entirely, in

favor of other biological investments. However, this

hypothesis remains to be tested.

Our understanding of the genetic and molecular

mechanisms of tail regeneration is still limited and

deeper analysis among different organisms is re-

quired to fully understand tail regeneration over var-

ious taxa (vertebrates, chordates, planarians, etc.). So

far, studies examining regeneration in planarians,

lizards, and tadpoles show very different pathways

to regeneration: increased expression of genes that

control cell proliferation, critical roles for
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transforming growth factor b signaling pathways,

upregulation of Wnt signals, and less expression of

inflammatory-immune genes (Ho and Whitman

2008; Almuedo-Castillo et al. 2012; Hutchins et al.

2014; Vitulo et al. 2016; Xu et al. 2020). A substan-

tial amount of work has been done with plethodon-

tid salamanders to understand the factors that

influence tail autotomy and regeneration (Marvin

2010; Marvin and Lewis 2013). These findings lead

to a need of further investigation of similarity in

these pathways and genes in organisms capable of

successful regeneration across the phylogenetic tree.

Technology in genomics and molecular science can

be useful tools to compare and contrast the mecha-

nisms and gene expressions leading to observed var-

iations in tail regeneration efficiency. For example, it

allows for comparison of the restorative regeneration

of planarians, that rebuild their complete lost anat-

omy, with modified anatomy in regenerated lizard

tails (Elliot and Alvarado 2012). Moreover, in order

to further investigate the depth of such questions

there must be a greater effort to genome sequence

species aside from currently used models such as

Anolis carolinensis (has a complete and annotated

genome sequence) and Eublepharis macularius

(Alföldi et al. 2011; Xiong et al. 2016). Thus far, it

is unknown how new structures can proliferate, dif-

ferentiate, and organize while surrounded by adult

cells. Comparative studies among species with high

and low regenerative fidelity could elucidate why

some adult animals can regenerate entire structures

and why some lose this capacity.

Tail regeneration is hypothesized to have broad

consequences for ecology and behavior; however, di-

rect experimental evidence for these consequences is

limited. Much of what we know is based on loco-

motor performance of salamanders and a small

number of lizard species, namely leopard geckos

and green anoles (e.g., Higham et al. 2013; Hsieh

2016). The results of these studies provide little con-

sensus. Salamanders, for example, regenerate tails

with fidelity; can regain full swimming capacities

with only 50% regeneration; and regeneration speed

is dependent on temperature, body size, and amount

of tail length lost (Marvin 2010, 2011, 2013; Marvin

and Lewis 2013; Joven et al. 2019). In contrast, most

lizards lose locomotor capacity following autotomy,

and it is slowly regained during regeneration. This

directly impacts predator avoidance and mate selec-

tion during and even after regeneration (Gillis et al.

2009; Higham et al. 2013; Jagnandan et al. 2014;

Hsieh 2016; Jagnandan and Higham 2017).

Equivocal evidence from tadpoles, however, indicates

that tail damage and regeneration may or may not

have functional consequences on adult body size and

adult locomotor performance (Ding et al. 2014;

Koch and Wilcoxen 2019; Zamora-Camacho et al.

2019), emphasizing the need for comparative

approaches to understanding the interplay between

tail regeneration and ecology.

To rectify the gap in current knowledge, tail-

regenerating species across a phylogenetic tree should

be included in a cross-disciplinary analysis. For ex-

ample, arboreal lizards that use tails to help climb

and balance and lizards that use tails to enhance

sprint speed or communicate would be better models

to measure how regenerated structures support

movement. Given the variation in the capacity to

(1) autotomize using fracture planes, (2) the fidelity

of regenerated structures, and (3) the secondarily

simplified regenerated tails of lizards, we suggest

leveraging the diversity of lizard habitat niches to

measure the value of tails (Pianka 1973; Skeels et

al. 2020). If a comparative and ecological approach

is taken to sample the diversity of tail regeneration

capacity in vertebrates, then the evolutionary pres-

sures of maintaining or evolving the ability to regen-

erate a lost appendage could be better known.

Functional morphology

The tail provides a variety of functions that attest to

its evolutionary and ecological importance. As noted

earlier in this review, while some organisms—includ-

ing humans—have reduced or lost the tail, a large

percentage of vertebrates have maintained, elongated,

elaborated, or repurposed this caudal extremity. In

early vertebrates that descended from their chordate

ancestors, the tail initially functioned as a device for

swimming and stabilizing the body from both inter-

nal and external perturbations (Webb 2002).

Embellishment of the tail with a broad caudal fin

enhanced the propulsive effect by its interaction

with the fluid environment (Flammang 2014). The

hydrodynamics of the undulatory tail motions with a

substantial caudal fin resulted in greater accelera-

tions, swimming velocities, and efficiency due to ac-

tion on an increased mass of fluid, facilitating

momentum transfer from the axial musculature

and vertebral column to the tail, to the water

(Drucker and Jensen 1996; Müller et al. 2001;

Tytell and Lauder 2004). Additionally, some fish

can move outside of the water with the help of their

tail (Swanson and Gibb 2004; Hsieh 2010; Gibb et al.

2013; Ashley-Ross et al. 2014), whereas certain sala-

manders can perform tail-assisted jumps (Hessell

and Nishikawa 2017; Brown and Deban 2020).
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The importance of a tail and its terminal fin for

high performance swimming is a quintessential ex-

ample of morphological and physiological modifica-

tions by evolution to a common successful form

(Hildebrand 1995; Liem et al. 2001; Kardong

2019). The examples of the shark, ichthyosaur, and

dolphin illustrate the effectiveness of this adaptation

via convergent evolution. These disparate organisms

exhibit similarities in shape and mechanics of the

tail, despite their phylogenetic separation. This text-

book example demonstrates how similar functional

requirements of the tail are met by different clades

that have evolved as identical solutions to analogous

environmental challenges. For example, tail mor-

phology is associated with environmental pressures

selecting on the need to operate in the open ocean

for fast, efficient propulsion. Convergence in mor-

phology is then also exploited for similar trophic

opportunities by highly derived aquatic predators.

As vertebrates moved out the water and con-

quered the terrestrial environment with limbed loco-

motion, the tail evolved new functions rather than

simply being dragged on the ground (McInroe et al.

2016). Fast running animals use the tail as an aero-

dynamic inertial appendage to rapidly maneuver

when changing direction (Wilson et al. 2013; Patel

and Braae 2014). Saltatorial animals and bipedal

runners employ the tail as a counterbalance

(Alexander and Vernon 1975; Gillis et al. 2013;

O’Connor et al. 2014). Even slow-moving tetrapods

make use of the tail as an effective passive defensive

strategy by sacrificing the extremity to allow the

body an opportunity for escape (Vitt et al. 1977;

Humphreys and Ruxton 2019). Rapid whip-like

motions of the tail can provide a weapon for hunting

and defense, which can be further enhanced by the

incorporation of a massive tail club as displayed by

the extinct Ankylosaurus (Arbour 2009; Oliver et al.

2013). A highly mobile tail affords the ability for

prehension. The seahorse (Hippocampus) can wrap

the tail around stationary objects for anchorage

(Hale 1996; Neutens et al. 2014). In addition, a pre-

hensile tail facilitates climbing in a variety of tetra-

pods except for birds (Hickman 1979; Lemelin 1995;

Luger et al. 2020). However, the reduced fused

pygostyle of birds supports the tail feathers that are

necessary to foster stability in flight and swimming

(Gatesy and Dial 1996; Felice and O’Connor 2014).

Finally, the tail with its high surface-to-volume ratio

can act as a thermal window in liberating excess

heat, particularly from mammals (Fish 1979;

Hickman 1979).

Two extant tetrapod vertebrate lineages that

evolved flight, birds and bats, further modified tails

for aerodynamic and other functions. Reduced fused

pygostyle of birds supports the tail feathers while

allowing unrivaled levels of modification of the full

tail shape and position (Gatesy and Dial 1996) allow-

ing it to variably act as an added wing, rudder, sta-

bilizer, and drag reducer (e.g., Maybury et al. 2001;

Maybury and Rayner 2001; Sachs 2007; Usherwood

et al. 2020). Bat tails, made of a membrane stretched

between hind limbs and including the caudal verte-

brae, also provide a flight control surface (Gardiner

et al. 2011). In both cases, the added lift and reduced

drag provided by the tails decrease energetic costs

relative to wing-only flight. Bird tails can also pro-

vide visual and even auditory signals for courtship

and predator avoidance (Woodland et al. 1980; Clark

et al. 2011) and can aid prey capture (e.g., Jackson

and Elgar 1993). Bat tail membranes can even act as

an insect net (Webster and Griffin 1962).

For so long, anatomical descriptions and proposed

functions of the tail were investigated by simple dis-

sections and morphometric measurements. There

have been considerable advances in medical imaging

and computational and physical modeling techniques

that have opened a new window into understanding

the relationship between form and function of the

caudal extremity. computed tomography (CT) scans

now allow a non-invasive means of examining both

the external and internal composition of hard and

soft anatomical features of tails (Watkins-Colwell et

al. 2018; Buser et al. 2020). These scans can be used

to create 3D models of skeletal anatomy which can

be used in a variety of ways. Finite element analysis

can then take these 3D models and apply loads to

different bones and joints to investigate strain prop-

agation and range of motion (Hsieh et al. 2005). 3D

geometric morphometrics and other statistical tech-

niques can tell us how morphology changes within a

group or over evolutionary time (Buser et al. 2018).

The powerful technique of X-ray of moving mor-

phology can be directed toward analysis of the com-

plex arrangement of the multiple joints and their

movements by the tail (Brainerd et al. 2010).

Investigations of structural mechanics (i.e., stress

and strain) of real specimens can assess tail strength,

flexibility, and range of motion and provide the data

to examine tail autotomy and regeneration (Hsieh et

al. 2005; Peixoto et al. 2019). Models generated from

CT scans can be 3D printed and tested on universal

testing machines to investigate how shape restricts

movement (Connors et al. 2019). The importance

of the tail as a thermal window can be investigated

with thermographic cameras (McCafferty 2007).

With incorporation of new technologies and a

perspective that views tails as an important feature
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in mechanics and physiology of organisms, there are

opportunities to address long-standing questions and

develop new possibilities for research. Tails function

as a transmission directing the forces generated from

muscles to the eventual exchange of momentum

from swimming animals to the fluid environment.

How this is accomplished has not been fully under-

stood. Likewise, the role of the tail in stability and

maneuverability is incomplete and needs to be ap-

propriately modeled. Evolutionarily, what anatomical

and morphological adaptations lead to the diversity

of tail functions? Can we use the wide range of mor-

phological data from CT scans along with kinematic

data and computational modeling to create a system

that “predicts” function in extant and extinct ani-

mals? Such questions can direct research projects

along several avenues that demonstrate how the tail

is an integral component of animals and essential in

their biology.

Sensorimotor control

The wide variety of behaviors for which animals use

their tails, as highlighted in the sections above, re-

quire them to extract sensory information from the

surrounding environment, filter and sort through

that information to determine the environmental rel-

evance, and adapt its movements to reach a prede-

termined course. During locomotion, the behavior is

quite complex because all of these steps have to be

achieved while the animal is moving, thus the animal

is constantly adjusting its motor output to changing

visual, olfactory, auditory, and mechanosensory feed-

back (Fig. 1; Goulding 2009; Huston and Jayaraman

2011; Wyart and Knafo 2015; Koch et al. 2018).

The sensorimotor system lies in the ability to

transform multiple sensory modalities into a loco-

motor movement (Schouenborg and Weng 1994;

Levinsson et al. 1999; Nishikawa et al. 2007;

Schouenborg 2008; Goulding 2009). Multisensory

processing is essential to adapting to noisy sensory

environments, enhances the robustness of the ani-

mal’s motor output, and increases efficiency of sen-

sorimotor tasks (Wyart and Knafo 2015). Studying

multisensory integration with respect to the animal’s

tail can provide insight in how animals use this ap-

pendage to navigate and overcome obstacles in the

real world. An example of multisensory processing

through sensorimotor integration, with an essential

role of the tail, is the startle escape response seen in

fish, which is an integral behavior needed for the

fish’s survival (Hale et al. 2002). The precise timing

and movements of a fish’s body and tail into a c-

shape, coupled with a tail flick, to generate a fast

escape response after detection of a predator is

driven directly by the sensorimotor system (Hale et

al. 2002; Tytell and Lauder 2002; Faber et al. 2006;

McHenry et al. 2009). This behavioral response con-

sists of coordination of neural activity, rhythmic pat-

tern generating networks, contraction of muscles,

movement of the fish, and feedback networks to

modulate the speed and direction of the movement.

Yet, the contribution of the multisensory informa-

tion and the neural circuits that regulate the behav-

ioral output is still not completely understood (Hale

et al. 2002; Nishikawa et al. 2007; Schuster 2012).

Although tail related motor tasks are key compo-

nents of locomotion in many animals (e.g., Lauder

2000; Higham and Russell 2010; Freymiller et al.

2019), developing practical experimental models

that require one to reproduce behaviorally relevant

multisensory environments with consistent motor

outputs is strenuous (Goulding 2009; Wyart and

Knafo 2015). On the one hand, some of the reasons

behind the lack of tail sensorimotor control studies

are that tail morphology and tail-related behavioral

repertoires exhibit variable and complex patterns of

motor activity, which make practical considerations

of tail-related experimental designs quite difficult to

develop. On the other hand, the neural circuits that

drive these tail movements have been less tractable

due to the complexity of those circuits with highly

variable patterns of activity and unreliable experi-

mental tools to identify them. In addition, analyzing

complex datasets with many levels of kinematic

parameters per animal, including interactions be-

tween animals, raises an important technical chal-

lenge (Wyart and Knafo 2015; Mathis et al. 2018).

One solution proposed in the field of neurome-

chanics is to use computational and physical models,

such as bioinspired robotics (e.g., Jusufi et al. 2010;

Libby et al. 2012; Patel et al. 2016; Zhu et al. 2019;

Lin et al. 2021), to help predict some of the behav-

ioral computations without observing the variability

of non-linear motor outputs from the animal’s tail.

However, sensory integration and the neural circuits

that underlie the movements of the tail are an essen-

tial component of sensorimotor studies, which can-

not fully be explained by simplified computational

and physical models.

Reflex-based tail movements are well suited for

experimental analysis and can provide insights into

how a moderately complex sensorimotor system can

generate tail-based locomotion. At this scale, senso-

rimotor integration at the “high-level” cortical areas,

normally associated with many complex networks of

neuronal projections and interactions in the central

nervous system, can be simplified to “low-level”
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regions such as the spinal cord. Sherrington’s pio-

neering studies have provided insights into the na-

ture of such neural pathways, with illumination of

the reflex arc and the control of reciprocal motor

actions through inhibitory neural networks in verte-

brates (Sherrington 1908; Brown and Sherrington

1912; Sherrington 1913). In addition to early studies

from Eccles, Lundburg, Brown, and Jankowska

(Brown and Sherrington 1912; Brown 1914;

Lundberg 1979; Jankowska 2001), there has been in-

creasing evidence to suggest that sensorimotor inte-

gration also occurs at the spinal cord (Grillner et al.

1991; Schouenborg et al. 1995; Mentel et al. 2006;

Schouenborg 2008; Nakanishi and Whelan 2012;

Hilde et al. 2016; Uemura et al. 2020; Picton et al.

2021), a region that has been originally hypothesized

to contain intrinsic networks of neurons that gener-

ate rhythmic locomotor-like patterns of activity

known as the central pattern generator (CPG)

(Brown and Sherrington 1912; Brown 1914;

Lundberg 1979; Jankowska 2001). Sensory inputs

can modulate and shape the outputs of the CPG.

However, whether the CPG is involved in driving

tail movements needs further exploration. Studying

sensorimotor control of tails, even at this reasonably

low level, still requires one to select a behaviorally

relevant multisensory environment that is tail-driven

and can be reproducible consistently.

In practice, an important goal of neurobiologists

is to understand how the nervous system is orga-

nized and functions to generate the locomotor

movement (Hale et al. 2002; Nishikawa et al. 2007;

Goulding 2009). Therefore, we propose some key

questions to understanding the sensorimotor control

of tails: (1) How do neural circuits that contain

millions of neurons integrate multisensory informa-

tion and flexibly contribute to specific motor pat-

terns involved in tail-driven locomotion? (2) How

are these ensembles of neurons organized and coor-

dinated to interact with rhythm and pattern gener-

ating circuits to produce the overall motor output or

behavior? (3) What is the neural computation of the

circuit underlying tail-driven movements and how

are these movements encoded? (4) What is the be-

havioral computation that includes both the active

and passive mechanical properties of the movement?

And (5) are these sensorimotor systems evolution-

arily tuned to the locomotor mechanics and are they

conserved across taxa?

Sensorimotor integration is highly dynamic where

the animal is constantly responding to changes in the

environment and updating its sensory inputs accord-

ing to its behavioral output: for example, as a kan-

garoo rat detects a snake strike, vestibular and visual

stimuli are constantly changing in the middle of an

escape jump (Freymiller et al. 2019). Ideally, one

would be able to capture every level of behavior

with real-time monitoring of the sensorimotor inte-

gration as it occurs in the circuits, but practical con-

siderations of such an experiment often make it

challenging and difficult. In classical experimental

settings, to probe these neuronal networks responsi-

ble for generating some of the behavioral output, the

animal must often be restrained, paralyzed, or re-

duced to a “fictive” experimental preparation, often

without sensory inputs (e.g., semi-intact, decere-

brated, deafferented, and ablation), to allow record-

ings of active neurons—a combination of

electrophysiology, pharmacological manipulation,

and anatomical identification is often required

Fig. 1. Neuromechanics of tail responses in animal locomotion. Diagram encompassing underlying neuromechanical control. The tail

behavior of a model animal (e.g., cheetah) expressed through a feedback control theoretic framework. The cheetah body interacts with

the environment (P) for locomotion. Three outer control loops are proposed, the first is the visual processing of the cheetah chasing

the prey (S1), the second is the vestibular processing of the cheetah trying to maintain its balance (S2) and the third is proprioceptive

processing of the cheetah tail (S3) using muscle spindles. These parallel sensor mappings are processed by a neural controller (C)

which then activates the tail musculature (B) to produce forces on the cheetah body. These muscles are also activated by high

frequency mechanical feedback when interacting with the environment.
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(Nishikawa et al. 2007; Goulding 2009; Wyart and

Knafo 2015; Koch et al. 2018). Even in reduced an-

imal preparations, these experimental designs are

limited by difficulties in manipulating the neurons

directly in the circuits, overcoming the large

locomotor-driven activity of the CPG, and produc-

ing reproducible behaviors consistently. In recent

years, the convergence of developmental genetics

and physiological and behavioral systems approaches

has expanded the possibilities of directly mapping

behavioral sensorimotor computations onto specific

neural circuits, targeting circuits of interests geneti-

cally, and monitoring the activity in vivo as the sen-

sorimotor integration occurs (Goulding 2009; Wyart

and Knafo 2015; Dobrott et al. 2019). As we move

forward in the field, sophisticated genetic manipula-

tions in powerful model systems such as mice and

zebrafish have allowed for more precise characteriza-

tion of the neural populations and its function in

behavior. Tail sensorimotor control can essentially

be dissected and pieced together using modern tools

such as ontogenetics, chemogenetics, optogenetics,

multi-array electrophysiology, and automated behav-

ioral tracking systems that utilize deep learning arti-

ficial neural networks (Levine et al. 2014; Mathis et

al. 2018; Dobrott et al. 2019; Lotfollahi et al. 2020).

Computational and physical models

In contrast to querying what animals are doing to

implement use of the tail in a complex system, an

alternative approach applies computational and

physical modeling approaches. The advantage of

these methods is that they permit simplification of

the remainder of the system to a degree unachievable

in biological systems, to identify governing principles

driving tail function. In other words, they promote a

template-based approach that permits progressive

increases in complexity of the examined system to-

ward the biological anchor (Full and Koditschek

1999). When combined with experimental robotics,

this can provide a powerful framework for achieving

valuable biological insight and facilitating discovery

of novel physics principles (Flammang and Porter

2011; Aguilar et al. 2016) and a better understanding

of sensorimotor control of tail movements (Fig. 1).

A classic example of a templates-anchor approach

is that of the locomotor spring-mass model used for

running gaits. The spring-mass model holds no clear

representation to the multi-segmented, multi-mate-

rial, highly complicated organism; but by virtue of

its simplification to a mere mass mounted on a

spring, it is capable of capturing a surprising sophis-

tication of dynamic behaviors inherent to legged lo-

comotor systems (e.g., Blickhan 1989; McMahon and

Cheng 1990; Schmitt and Holmes 2000; Geyer et al.

2002). By gradually adding layers of complexity to

this template, it then became possible to identify the

roles of other subtleties critical to legged locomotion,

that otherwise would have been impossible to isolate,

such as leg retraction kinematics, hip torque, and

stiffness modulation (e.g., Seyfarth et al. 2003;

Daley and Biewener 2006; Spence et al. 2010; Shen

and Seipel 2012). Like the spring-mass model, a tail

template model of comparable simplicity could pro-

vide insight into basic physical principles guiding its

function. For example, whereas a simple mass on a

stiff or spring-tether may be sufficient to capture its

dynamics for basic inertial function, imbuing greater

sophistication via a distributed mass-spring model

can reveal how subtle changes in position or curva-

ture impact function. These, and increasingly more

complex tail models, could then advance our under-

standing of tail mechanics and functional evolution.

Somewhat more sophisticated template-based

models can be tested using physical models. For ex-

ample, these physical models can be obtained using a

combination of micro-CT scans and 3D printing, to

derive shapes of varying levels of sophistication and

with different stiffness and elasticity (Esposito et al.

2012; Porter et al. 2015; Flammang et al. 2017; Behm

et al. 2018). In doing so, it becomes possible to iso-

late aspects of a tail’s complex morphology and ma-

terial properties and examine how each component

contributes to the overall function of the entire

structure. Likewise, it allows testing of biologically

“impossible” shapes, to query why they might not

exist. Porter et al. (2015) relied on this approach

to discover why seahorse tails are square, and also

why most other vertebrates have tails with a round

cross-sectional geometry. Another important applica-

tion of physical models is that they can be used to

“revive” extinct species (e.g., McInroe et al. 2016;

Johnson and Carter 2019; Ibrahim et al. 2020).

Using extant species as a guide, it becomes possible

to reconstruct aspects of an extinct animal’s ecology

and evolutionary history with a greater degree of

specificity than previously possible.

Implementation of these models digitally in a

computationally simulated environment provides ad-

ditional insight on appendage–environmental inter-

actions. Although this approach is already commonly

used to quantify tail function during flight and

swimming (Borazjani and Sotiropoulos 2008, 2009)
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using computational fluid dynamics models, it is

much less frequently applied during explorations of

terrestrial tail use. Implementation of finite element

methods embedded within a discrete element model

would permit simultaneous quantification of ap-

pendage force production and environment re-

sponse—a topic that has been gaining increasing

attention only during the last decade or so.

Additionally, the digital realm provides an opportu-

nity for rapid computational evolution of appendage

morphology (Moore et al. 2013), and thus an ability

to test a diverse range of shapes subjected to differ-

ent kinematics and/or environmental parameters that

would otherwise be extremely time-consuming if

working exclusively with physical models. Ever-

increasing computational power and availability of

open-source modeling software (e.g., Large-scale

Atomic/Molecular Massively Parallel Simulator

[LAMMPS] and LAMMPS Improved for General

Granular and Granular Heat Transfer Simulations

[LIGGGHTS]; Plimpton 1995; Kloss et al. 2012) is

making this approach ever more tractable.

The field of bioinspired and biomimetic robotics

was born from the recognition of the incredible ver-

satility, stability, and grace with which animals move

through the world, and the subsequent desire to em-

ulate their form and function in a wide variety of

models and robots. Because of the broad range of

tasks for which animals use their tails, researchers

have focused on this appendage on several robotic

platforms (e.g., Chang-Sui et al. 2011; Lauder et al.

2011; Zhang et al. 2016; Rosic et al. 2017; Saab et al.

2018; Liu and Ben-Tzvi 2021). Terrestrial bipedal

and quadrupedal robots and vehicles have been

equipped with tails for manipulation, climbing, ma-

neuvering, and balance (Spenko et al. 2008; Chang-

Sui et al. 2011; Rone and Ben-Tzvi 2015; Zhang et al.

2016; Flammang et al. 2017; Saab et al. 2018). And

there has been increasing interest in design and de-

velopment of aquatic robotics and vehicles that use

fishlike, tail-propelled swimming (e.g., Triantafyllou

and Triantafyllou 1995; Long et al. 2006; Lauder et

al. 2011; Kopman et al. 2015; Rosic et al. 2017; Lin et

al. 2021), motivated by a need for robots that are

capable of prolonged, efficient swimming, and/or

making difficult and smooth maneuvers. As a whole,

experimental robotics is largely driven by task-based

goals: using the addition of a physical tail to add

greater functionality for manipulation or balance,

or to allow the robot to make swifter turns or ma-

neuver mid-air (Chang-Sui et al. 2011; Briggs et al.

2012; Libby et al. 2012; Rone and Ben-Tzvi 2014).

The next-generation tail models should include more

than rigid body dynamics alone, and instead

integrate multi-joint flexibility and stiffness proper-

ties that afford animal tails their adaptability and 3D

dexterity. An area of priority is the development of

actuators that more closely model muscle mechanics.

These actuators could then be tested in future tail

models, reducing weight and increasing smoothness

of motion. With these considerations in mind, the

implementation of tail models using soft robotics

could be another productive direction to pursue.

Soft actuators allow for shape changes and bending

actuation with potentially infinite degrees of free-

dom, thus facilitating modeling of prehensile tails,

while soft sensors enable sensory feedback to provide

insight on the neuromechanics of locomotion, such

as the closed loop control of body caudal fin swim-

ming of soft robotic fish (Lin et al. 2021), in addi-

tion to permitting measurement of curvature in

conditions where videography is not feasible (e.g.,

nocturnal and low visibility medium).

In conjunction with bioinspired robotics is an

emerging field of robophysics (Aguilar et al. 2016). A

robophysical approach is highly complementary to ex-

perimental robotics, but instead of being driven by op-

timization of task-driven goals, it seeks to use instances

of success and failure to reveal underlying principles of

the interaction. A broad exploration of parameter space

also permits the discovery of new locomotor strategies

as well as novel physics principles that might otherwise

be impossible to deduce when working with the full

complexity of a system (e.g., Li et al. 2009; Marvi et

al. 2014; Aguilar et al. 2016). Where robophysics is

most powerful when dissecting contributions from mul-

tiple, complex sources is of interest. This includes un-

derstanding the role of the tail relative to the applied

dynamics of other appendages on the body, or even

adding in considerations of the complex, natural envi-

ronment in which the animal is performing a behavior

of interest, which may shift unexpectedly as the animal

moves (e.g., Schwaner et al. 2021, this issue; Shield et al.

2021, this issue).

Conclusion

Tails are a common characteristic in animals but the

diversity in development and repertoire of functional

behaviors varies greatly across and within taxa.

Depending on the species, the tail can have a singular

or multi-functional purpose. In addition, tails exhibit a

wide range of dexterity and morphological character-

istics. The development, evolution, shape, and function

of an appendage that seems otherwise relatively simple,

such as a tail, has led researchers, scientists, and engi-

neers to a proliferation of bio-inspired designs of dy-

namic robotic devices that use tails for an even wider
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range of tasks. Yet, there are many questions to be

answered to understand the evolution, development,

sensorimotor capabilities, morphology, ecology, and

functions of tails across the phylogenetic tree and appli-

cations in bioinspired designs.

Expanding our knowledge of tails has important

implications and has the potential to answer many

long-standing questions. For example, understanding

the morphology and genetic foundation of post-anal

appendages can elucidate the evolutionary origin(s)

and functions of tails, and opens opportunities to

begin to grasp concepts like secondary loss, as seen

in humans. In addition, understanding the relation-

ship between the form and function of the tail, we

can make informed predictions of tail function based

on their appearance, with implications for studies of

both extant and extinct species. Kinematics, sensori-

motor, and morphological tail characteristics can

also be used to further develop computational mod-

els and bioinspired robotics. Lastly, comparison of

next generation tail models with vertebral column

models may have important medical implications

for treatments for human vertebral dysfunction

(e.g., Ishihara 1996; Handa et al. 1997; Iatridis et

al. 1999; Demers et al. 2004; Han et al. 2008).

Tail research crosses many disciplines, and here

we presented just a focused review of some of

them. We discussed the current state and future

directions for tail-related research in five key topic

areas. Although they were presented as distinct cat-

egories, these topics are inherently interrelated. For

example, the post-anal tail is a phylum-defining

component of the chordate bauplan, and similar ge-

netic pathways are found to be important for both

tail development and regeneration (Martin and

Kimelman 2008; Vitulo et al. 2016). Tail regenera-

tion—or lack thereof—has important consequences

for sensorimotor control strategies and functional

morphology, which in turn inform experimental ro-

botics and robophysics inquiry. Examining tail func-

tion using a combination of these approaches, as

well as computational and physical modeling, will

provide deep insight into the evolutionary pathways

and functional importance of tails to the locomotor

system and beyond. As a result, a re-integration of

biological disciplines is critical to the progress of

multiple fields. This can be facilitated by future sym-

posia, workshops, and seminars, focused on advance-

ments of tail and tail-related research. Such

interactions among tail researchers can serve as a

foundation for cross-disciplinary research collabora-

tions to shed light on the form, function, EvoDevo,

and technical applications of animal tails.
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