

1

1. Pipeline Overview

The fundamental problem of rendering is to take as input a series of coordinates and map that to pixels on
the screen, modulated by the lighting equations. In addition to the coordinates of the primitives, the input
also includes associated lighting data such as colors, textures, material properties etc.

Rendering Sequence: The sequence of instructions generated by the API level program is what we refer to
as the “rendering sequence”. From the API level program, the rendering sequence is generated by the run-
time, undergoes a series of transformation and is eventually handed off to the graphics hardware.

The exact transformations are specific to the API’s and the ultimate rendering sequence generated is specific
to the graphics hardware.

Graphics Stack: The system – hardware and software – that is responsible for producing the first iteration
of the rendering sequence and eventually producing the pixels seen on the screen is what we call the
Graphics Stack.

Driver
Graphics

Hardware

PixelsP
rim

itiv
e

s
 &

A
s
s
o

c
ia

te
d

D
a

ta

Host

System Graphics

Subsystem

API

Program

Figure 1 Illustration of the Rendering Problem

2

shankar.swamy@gmail.comPipeline-0.vsd

Application

Driver

Command

Geometry

Rasterization

Texture

Fragment

Display

API Program

API Rendering

Sequence

DX Runtime

Device Independent Render

Sequence

GPU Driver

GPU Dependent Render

Sequence

GPU Hardware

Display

Figure 2 Some graphics stack representations

3

 Classic Rendering Pipeline

“Classic” in this context means “OpenGL” because at first there was only OpenGL fixed function rendering
pipeline (i.e. no programmable shaders).

Figure 4 shows a block diagram of an early version of OpenGL. A lot of the fundamental features of this
continue to be true today:

1. Operations on vertices, pixels, fragments and textures are orthogonal.
2. Symmetry in imaging and geometry paths.
3. Circular paths within the pipeline.

Transform Clip
Divide by w &

Viewport

Transformation
Render

Transform Clip
Divide by w,

invert ‘z’,

Viewport

Transformation
Render

shankar.swamy@gmail.com

Primitive

Setup

R
a

s
te

riz
a

tio
n

Per

Fragment

Pipeline

Operations

Per

Fragment

Framebuffer

Operations

Render

Fragments

Figure 3 Sequence of transformations & operations for 3D rendering of primitives

4

shankar.swamy@gmail.comPipeline-0.vsd

Unpack

Pixels

Pack

Pixels

Unpack

Vertices

Pixel

Operations

Fragment

Operations

Vertex

Operations

Image

Rasterization

Texture

Memory

Point, Line &

Polygon

Rasterization

F
R

A
M

E
 B

U
F

F
E

R

Image

Geometry

Figure 4 A block diagram of an early version of OpenGL

5

OpenGL specification did not (does not) provide a model implementation; rather specifies what results of
rendering should be and not how they should be computed. So any implementation would a possible
compliant implementation.

Notice two distinct stages of implementation in the following:

1. the geometry processing pipeline: up to (but excluding) the Triangle Setup,
2. the rasterization pipeline: from Triangle Setup till the end of the pipeline.

Application

Driver

Command

Geometry

Rasterization

Texture

Fragment

Display

API Program

API Rendering

Sequence

DX Runtime

Device Independent Render

Sequence

GPU Driver

GPU Dependent Render

Sequence

GPU Hardware

Display

shankar.swamy@gmail.comPipeline-0.vsd

Figure 5 A more advanced, early OpenGL (fixed function) pipeline

6

Sample Texture

& Map

Fragments

Alpha

Blending

Blend

Fragments
into Pixel Buffer

(Render Target)

Refresh

Screen
with Render Target

a la glBlendFunc(...)

Fog Effects

Pixel

Ownership

test (does the

pixel belong to the

window/context?)

Stencil Test
(discard/retain pixels

based on the

comparison of stencil

buffer value & the

reference value)

Channel Mask

(Block off

specified Color

Channel)

NDC Space
Y

X

Z

(left handed

coordinate system)

shankar.swamy@gmail.com

Pixel Fragments &

Associated Data

Alpha Test
(discard pixels

based on the alpha

values)

Depth Test

Scissor Test

(if the pixel

coordinates lie

outside the scissor

rectangle, discard

the pixels)

Dithering
(map the floating

point color value

to an existing

color)

Operations Under Shaded Area represent per-fragment operations

S
C

A
N

C
O

N
V

E
R

T

shankar.n.swamy@Intel.co

m

Viewport Space

Space bounded by [x0, y0, 0] x [x0+w, y0+h, 1.0]

 where: w → viewport width,

 h → viewport height

 z range [0.0, 1.0]

Object Space

ModelView

Matrix

 Perspective

Division

CLIPPING

Invert z

Map

[-1, -1, -1] X [1,1,1]

to Unit Cube

V
E

R
T

IC
E

S

Y
X

Z

OpenGL

Eye Space

(View Space)Compute Per

Vertex

Lighting

(right handed

coordinate system)
(left handed

coordinate system)

Space bounded by

[-1,-1,-1] x [+1,+1,+1]

Y
-Z

XEYE

Y

X

Z

Perspective

Space

(Homogeneous

Screen Space)

(4D Space)

3D Screen Space

(Euclidean Screen

Space)

Perspective

Space

(Homogeneous

Screen Space)

(4D Space)

Z-Inverted

3D Screen Space

V
E

R
T

E
X

 C
O

N
N

E
C

T
IV

IT
Y

 IN
F

O
R

M
A

T
IO

N

CLIPPER UNIT

Classic rendering Pipeline

Primitive Setup:

1.Transform to {ViewPort}

2. Primitive Assembly

3. Back-face culling

4. Gradients Computation

Perspective

Projection

Primitive

Assembly

Pipeline-0.vsd

Pipeline-2.vsd

Figure 6 A generic, non-programmable pipeline implementing an early OpenGL compliant
rendering

7

1.1.1 Notes on Figure 6

1. The perspective transformation is split into two parts: 1. the perspective projection and2. the

perspective division. The perspective projection transforms the vertices from {Camera} to

{Perspective} or the homogeneous screen space. Then the perspective division transforms it to

Euclidian {Screen}.

The {Object} → {Homogeneous Screen} is an affine transformation. But the {Homogeneous Screen}

→ {Euclidian} back is not an affine transformation. This is the root of the “texture interpoliatoin

problem”. To convert the triangle into pixel coordinates, we project the coordinates fo the triangle to

the {Screen}. It is a projective transfomration. While in {Homogeneous Screen} coordinates, we

need to interpolate the texture coordinates between the two vertices. We cannot start with the

texture coordinates in {Texture} of the two vertices and linearly interpolate to get the texel for each

pisel between the two vertices. That is not going to work as {Homogeneous Screen} → {Euclidean

i.e. Texture} is not affine. The texture needs to be interpolated using “Rational Linear Interpolation”.

In Figure 7, we need to assign texls to each pixel based on (𝑥𝑠 , 𝑦𝑠) of the pixel. We know

(𝑥𝑠 0, 𝑦
𝑠
0) → (𝑢0, 𝑣0) and (𝑥𝑠 1, 𝑦

𝑠
1) → (𝑢1, 𝑣1). Ignoring the bilinear interpolation for the moment, if

we have to linearly interpolate the texture coordiantes (𝑢0, 𝑣0) and (𝑢1, 𝑣1) to determine the texel

associated with certain (𝑥𝑠 , 𝑦𝑠), we cannot map linearly (𝑥𝑠 , 𝑦𝑠) → (
(𝑢1−𝑢_0)

(𝑥𝑠 1− 𝑥𝑠 0)
(𝑥𝑠 − 𝑥𝑠 0),

(𝑣1−𝑣_0)

(𝑦𝑠 1− 𝑦𝑠 0)
(𝑦𝑠 − 𝑦𝑠 0)). This will not work. The pixel coordinates from the {Homogeneous Screen} do

not map linearly to {Texture} space, as the transformation to {Homogeneous Screen} from {Object} is
a projective transformation. However we do know that (𝑥/𝑤𝑠 , 𝑦/𝑤𝑠) map linearly to (𝑢0, 𝑣0) and

(𝑢1, 𝑣1). So we need to interpolate as:

shankar.swamy@gmail.comTextureMapping-1.vsd

{Object}

{Texture}

{Homogeneous Screen}

not an affine transformation

not a
n affin

e

tra
nsform

atio
n

Figure 7 The texture interpolation problem - we need to map textures specified in the
{Texture} to the triangle that is specified in {Object} but projected to {Homogeneous
Screen} space which is measured in pixel units

(𝑥𝑤 0, 𝑦
𝑤

0, 𝑧
𝑤

0)

(𝑥𝑤 1, 𝑦
𝑤

1, 𝑧
𝑤
1)

(𝑥𝑠 0, 𝑦
𝑠
0, 𝑧

𝑠
0, 𝑤

𝑠
0)

(𝑥𝑠 1, 𝑦
𝑠
1, 𝑧

𝑠
1, 𝑤

𝑠
1)

 (𝑢0, 𝑣0)

(𝑢1, 𝑣1)

(𝑢2, 𝑣2)

8

(
𝑥𝑠

𝑤
,
𝑦

𝑤

𝑠

) →

(

(𝑢1 − 𝑢_0)

(
𝑥𝑠 1

𝑤1
−

𝑥𝑠 0

𝑤0)

(

𝑥𝑠

𝑤
−

𝑥𝑠 0

𝑤0) ,
(𝑣1 − 𝑣0)

(
𝑦𝑠 1

𝑤1
−

𝑦𝑠 0

𝑤0)

(

𝑦𝑠

𝑤
−

𝑦𝑠 0

𝑤0)

)

We will run into a similar issue when a primitive is clipped. The texture coordinates are specified for

the entire primtive, and if part of it is clipped, the texture coordinates need to be interpolated to

assign new texture coordintates to the clipped vertex. This is illustrated in Figure 8.

2. The OpenGL perspective projection transformation combines a few more operations beyond the

perspective transformation and those operations are shown in shaded color in Figure 11.
3.

),,,,,(0 000000 tswzyxv

),,,,,(1 111111 tswzyxv

),,,,,(2 222222 tswzyxv

),,,,,(0 000000 tswzyxv

),,,,,(
1

11
1

1
1

1

tswzyx
v

),,,,,(
2

2
2

2
2

2
2

tswzyx
v

)',',',',','(
1

1
1

1
1

1
1

tswzyx
v

shankar.swamy@gmail.com

Clipped

TextureMapping-1.vsd

Figure 8 When a primitive is clipped, we need to interpolate the texture coordinates
using “Rational Interpolation” and determine the new texture coordinates for the new
vertex introduced. Though the above situation will result in two new vertices in place of
one that is outside, we have marked up only one of them in the Figure.

9

-Z

+X

+Z

+X

X=1

X=-1

Z= -1 (OpenGL)

OR Z = 0 (D3D)

Z=1

Transformation from View Space to NDC Space

Camera Space NDC Space

Y

-Z

X

Eye is at the origin,

looking along -Z direction

Y

X

Z

(-1, -1, -1) OpenGL

OR (-1, -1, 0) D3D

(1, 1, 1)Y

X
Z

+Y

shankar.swamy@gmail.com

X= r

X= l

Z
=-n

Z
=-f

CoordinateTransformations.vsd

Figure 9 {View} and {NDC} Systems – the redundant flipping of z-axis between {View} and {NDC}
is for historic reasons – has no real value it and in implementations does not add extra overhead.

10

Figure 9 {View} and {NDC} Systems shows the various coordinate spaces that the geometric primitives are
transformed through as they traverse through the pipeline. In this document we indicate the coordinate
spaces either explicitly as in “Perspective Space” or by just using the name of the coordinate space
surrounded by curly braces as in “{Perspective}”. To refer to a coordinate in a particular space we use the

super-prefix notation such as (
𝑣𝑝
𝑥,

𝑣𝑝
𝑦,

𝑣𝑝
𝑧) for coordinates (𝑥, 𝑦, 𝑧)in the {Viewport}.

The coordinate spaces which are more frequently used in this document along with the notations used to
represent them are given in Table 1

Table 1 Coordinate systems frequently used document

Coordinate
Space with
equivalent

names

Representation for
coordinates

Immediate
previous

coordinate
space in the

pipeline

Transformation path from the
immediate previous

coordinate space

World space or
{World}

(𝑥, 𝑦, 𝑧) none none

Texture Space
or {Texture}

(𝑢, 𝑣) or (𝑢, 𝑣, 𝑠, 𝑡) none none

Homogeneous
Texture space
or {HTexture}

(ℎ
𝑢,

ℎ
𝑣) or

(ℎ
𝑢,

ℎ
𝑣,

ℎ
𝑠,

ℎ
𝑡)

{Texture} (Projective transformation) Not
needed.

View space or
{View},
also {Camera},
{Eye},

(𝑣 𝑥,
𝑣
𝑦,

𝑣
𝑧)

for vertex;
(𝑣 𝑢,

𝑣
𝑣) for texture

{Object} Modeling and viewing matrices

Perspective
space or
{Perspective},
also {Clip},
{Homogeneous
Screen},
{Projective}

(
𝑝
𝑥,

𝑝
𝑦,

𝑝
𝑦) for vertex;

(
𝑝
𝑢,

𝑝
𝑣) for texture

{View} Perspective projection matrix

3D Screen
space
{3D Screen}

(𝑠 𝑥,
𝑠
𝑦,

𝑠
𝑧) {Perspective} Perspective division i.e. divide

by w

NDC space or
{NDC}

(𝑛𝑑𝑐𝑥,
𝑛𝑑𝑐
𝑦,

𝑛𝑑𝑐
𝑧) {3D Screen} Invert z- coordinate and scale

the view volume to
[−1, −1, −1] × [1,1,1]

Viewport space
or {Viewport}

(
𝑣𝑝
𝑥,

𝑣𝑝
𝑦,

𝑣𝑝
𝑧) {NDC} Map (

𝑣𝑝
𝑥,

𝑣𝑝
𝑦) to

[
𝑣𝑝
𝑥𝑜𝑟𝑔,

𝑣𝑝
𝑦
𝑜𝑟𝑔
] × [𝑣𝑝𝑥𝑜𝑟𝑔 +

𝑉𝑃𝑤𝑖𝑑𝑡ℎ,
𝑣𝑝
𝑦
𝑜𝑟𝑔
+ 𝑉𝑃ℎ𝑒𝑖𝑔ℎ𝑡], with

the z-value that is closest to
origin of all possible pixels along
the z-axis

For a coordinate system, using a suitable name that is indicative of its nature or function makes it easier to
analyze the given problem. And for some of the systems, the suitable name depends on the context. Thus
we end up with multiple names for some of these systems and we use different names for the same system,
depending on the context. Some transformations such as inverting the Z-axis to go from {3D Screen} to
{NDC} are there because of legacy reasons. They have not disappeared because they do not add additional

11

computational overhead to the pipeline as such transformations are integrated into a matrix multiplication
that anyway has to be carried out.

In the notation outlined above the space that a coordinate belongs is unambiguously identified with the
prefixed superfix to the coordinate.

 Relationships and tranformations between different coordinate

systems

We also deal with the coordinate space associated with the textures, in addition to the ones mentioned
earlier.

Texture coordinates, as they are specified are fractional – that is, they are within the range [0, 1.0]. So within
two coordinate systems related by affine transformations, the texture coordinates do not change – that is,
they are identify transformations.

In the graphics pipeline the primitives start from either the object space or the view space. They undergo a
projective transformation. The projected vertices are transformed to the screen space and rasterized in the
screen space.

1. It is not simple due to projective transformation which is different from a rigid transformation such as
modeling and viewing transformations.

2. We have two groups of coordinate spaces separated by the projective transformation. Since the
projective transformation is not an affine transformation, it is not possible to move from a coordinate
system in one group to any one in the other by exclusively using affine transformation. But within a
group it is possible to transform the vertex element to different systems by using affine
transformations exclusively. Two coordinate systems between which we can transition with
exclusively using affine transformations are said to be affine with each other (2).

3. Explain the diagram below.
4. Refer to the Appendix on Olano paper.

Projective Transformation

Projective Transformation

View

Space

Homogeneous

Screen

Space

Texture

Space

World

Space

Euclidean

Screen

Space

Homogeneous

Texture

Space

Object Affine Spaces Screen Affine Spaces

Projective Transformation

Projective Transformation

A
ffine Transform

ation

A
ffin

e
 T

ra
n

s
fo

rm
a

tio
n

Affine Transformation

A
ffi
ne

 T
ra

ns
fo

rm
at

io
n

A
ffin

e
 T

ra
n

s
fo

rm
a

tio
n

Affine Transformation

A
ffin

e
 T

ra
n

s
fo

rm
a

tio
n

Affine Transformation

A
ffi
ne

 T
ra

ns
fo

rm
at

io
n

A
ffine Transform

ation

A
ffin

e
 T

ra
n

s
fo

rm
a

tio
n

Affine Transformation

A
ffin

e
 T

ra
n

s
fo

rm
a

tio
n

A
ffin

e
 T

ra
n

s
fo

rm
a

tio
n

shankar.swamy@gmail.com

divide by w

multiply by w

divide by w

multiply by w

Figure 10 Six different vector spaces used in 3D pipeline

12

The vector spaces mentioned in Figure are explained in the following table.

Table 2 Transformation modes for transforming between different vector spaces used in the 3D
pipeline

Source vector space Destination vector space Transformation mode

Object Space Texture Space Affine: Linear/Bilinear

Object Space World Space Affine: Model Matrix (rotation,
translation, scale are all affine
matrices)

Object Space Homogeneous Screen Space Affine: Multiply by the View Matrix that
often includes the perspective
projection

Texture Space Homogeneous Screen Space Affine: This is just an identity
transformation which is an affine
matrix*

Texture Space Homogeneous Texture Space Projective: Need to project to a space
that is affine with screen space: needs

a divide by w~ .**

Homogenous Screen Space Screen Space Projective: the perspective divide:

divide by
𝑝
𝑤**.

Homogeneous Texture
Space

Texture Space Projective: Inverse of the perspective
divide: this is a multiply by w

Screen Space Homogeneous Space Projective: Inverse of the perspective
divide: this is a perspective multiply by
w

*This is an identity transformation - always: to go from a Euclidean to homogeneous coordinates is an
identity transformation. It is when we switch spaces – say from the Euclidean space to a projective space
that we have a more complex operation which includes a perspective divide. Homogeneous coordinates are
also very useful in Euclidean space also: they make all affine operations to be represented as multiplication
by [4x4] matrices.

**For efficiency, it should be “multiply by 1/w” rather than a divide by w.

 Overviews of the rendering Pipeline

13

TRIANGLES PIXELS
Geometry

Processing

Rasterization &

Pixel Processing

3D Pipeline

TRIANGLES PIXELS

Rasterization & Pixel Processing

Rasterization

Per Fragment

Pipeline Ops

1. Texturing

2. Color Sum

3. Fog

Per Fragment

Framebuffer Ops

shankar.swamy@gmail.com

Figure 11 Interactive Rendering System: Overview

14

P
ro

c
e

s
s
e

d
 V

e
rtic

e
s
:

 1
. C

o
o

rd
in

a
te

s

 2
. A

s
s
o

c
ia

te
d

 D
a

ta

Transformation & Lighting

Color & Coloring

Primitive Assembly, Clipping &

Setup

shankar.swamy@gmail.com

OpenGL Classic-Rendering Pipeline

Point

Rasterization

Assembled, Clipped Primitive

OR Transformed, Culled

Current Raster Position

Primitives

Bitmaps

Draw Pixels

Line Rasterization
Polygon

Rasterization

Pixel Rectangle

Rasterization

Bitmap

Rasterization

Texturing

Color Sum

Fog

Per Fragment

Pipeline Ops

Per Fragment

Framebuffer Ops

F
ra

g
m

e
n

ts

Fragments

1. Alpha Test

2. Stencil Test

3. Depth Test

4. Alpha Blending

5. Dithering

6. Channel Masking

7. Blending fragments

into render target or

pixels buffer

8. Refreshing the screen

with the render target

Figure 12 Classic OpenGL rendering pipeline

Figure 13 OpenGL Fixed Function Rendering Pipeline

15

Notice the correlation between the three of the four components of the Associated Data above and the three
processing stages after the rasterization: Texturing, Color Sum and Fog. The fourth one: Edge Flag data is
used in the rasterization process.

Transformation &

Lighting
Primitives

Current

Normal

Current Color &

Materials

Current Edge Flag

Fog Coordinates &

Generic Vertex Attributes

Lighting

TexgenCurrent Texture Coordinates

Set_0

Current Texture Coordinates

Set_1

Current Texture Coordinates

Set_2

Current Texture Coordinates

Set_MAX_TEXTURE_UNITS

In
p

u
t V

e
rte

x

C
o

o
rd

in
a

te
s

Vertex Coordinates Transformation

Normal Coordinates Transformation
T

e
x
tu

re

M
a

trix

shankar.swamy@gmail.com

Transformed Coordinates

OR

Raster Position Valid Bit

Raster Position

Raster Distance

Transformed Coordinates (vertex, normal)

OR Transformed Raster Position etc

Associated Data

Processed Vertices

ASSOCIATED DATA

(1) Colors:

primary,

secondary, front,

back

(2) Edge Flag

(3) Fog

(4) Texture

Coordinates

Figure 14 Classic OpenGL rendering pipeline showing the data flow paths

16

Primitive Assembly

Point Culling

shankar.swamy@gmail.com

Coordinates OR

Raster Data

Associated Data:

 Colors

 Edge Flag

 Fog Coordinates

 Texture Coordinates

 Generic Vertex Attributes

State Data:

 Begin Primitives

 End Primitives

Line Clipping

Triangle Clipping

Color Processing

Primitive Setup
Rasterize

Figure 15 Classic OpenGL rendering pipeline showing pre-rasterization setup of data

Primitive

Assembly &

Processing

Point

Rasterization

Primitives

Bitmaps

Draw Pixels

Line Rasterization
Polygon

Rasterization

Pixel Rectangle

Rasterization

Bitmap

Rasterization

Fragments
Fragment

Program

shankar.swamy@gmail.com

Fragment

Program

Current Raster

Position

Color & Coloring

Assembled,

Clipped Primitive

Figure 16 OpenGL programmable rendering pipeline showing the data flow paths

17

shankar.swamy@gmail.com

shankar.swamy@gmail.com

shankar.swamy@gmail.com

TRANSFORMED

VERTICES
VERTICES

Vertex Shader

Kernel:

Transform to

View Space,

Light Vertices,

Transform to

Homogeneous

Space

PRIMITIVES

Vertex Connectivity

Information

PRIMITIVE ASSEMBLY

AND RASTERIZATION

PIXEL

FRAGMENTS

PIXEL

POSITIONS

RASTER OPERATIONS

(1) Fog Effects

(2) Scissor Test

(3) Z-Test

(4) Alpha Test

(5) Stencil Test

(6) Depth Test

(7) Alpha Blending

(8) Dithering

(9) Channel Masking

User Pixel Shader Kernel: Fragment

Texturing, Coloring Operations

Blend Fragments

into Pixel Buffer

(Render Target)

Refresh Screen

with Render

Target

Figure 17 IV Generation programmable pipeline sequence of operations

18

shankar.n.swamy@Intel.com

shankar.n.swamy@Intel.com

VERTEX SHADER
GEOMETRY

SHADER

(1) Clip (to Guard Band)

(2) Perspective Divide

(3) Viewport Mapping

(4) Back Face Cull

TRIANGLE SETUP

&

RASTERIZATION

USER PIXEL

SHADER

Update Render

Target

Refresh Screen

with Render

Target

(1) Scissor Test

(2) Z-Test

(3) Alpha Test

(4) Stencil Test

(5) Depth Test

(6) Alpha Blending

(7) Dithering

(8) Channel Masking

VERTEX ELEMENTS

Figure 18 An overview of DX10 pipeline

19

Notice that the Vertex and Index buffers on one hand, and the Textures and Render Targets on the other

hand are separate. (Former is streamed and the latter is sampled.)

Geometry Processing

(Vertex Shader)

Pixel Processing

(Pixel Shader)

Frame Buffer Processing

(Pixel Tests etc)

VIDEO MEMORY

Index Buffer

&

Vertex buffer

(Streamed)

Textures

&

Render Targets

(Sampled)

shankar.swamy@gmail.com

texture

sampling

hardware

Figure 19 DX9 programmable pipeline - API view

20

 Rasterization

In DX10 model, there is just video memory. Programmer has the flexibility to reinterpret the video memory

as needed. However, the distinctive streaming and sampling of buffers is still retained.

The Stream Output Stage allows for the primitives from the Geometry Shader to be streamed back into the

pipeline through the video memory.

Geometry Processing

Pixel Processing (PS)

(Pixel Shader)

VIDEO MEMORY

Vertex Buffer

Index buffer

Textures

Render Targets

Vertex Shader (VS)

Geometry Shader (GS)

Stream

Output

(SO)

Input Assembler (IA)

Rasterizer (RS)

Output Merger (OM)

(Pixel Tests, Framebuffer updating etc)

shankar.swamy@gmail.com

texture

sampling

hardware

Primitive Assembler

Figure 20 DX10 pipeline - API view

21

Geometry Processing

Pixel Processing (PS)

(Pixel Shader)

VIDEO MEMORY

Vertex Buffer

Index buffer

Textures (1D,

2D, 3D, Cube)

Render Targets

Vertex Shader (VS)

Geometry Shader (GS)

Stream

Output

(SO)

Input Assembler (IA)

shankar.n.swamy@intel..com

texture

sampling

hardware

Hull Shader (HS)

Tessellator (TS)

Domain Shader (DS)

0 to 4 streams going to buffers0
 o

r
1

s
tr

e
a

m

Output Merger (OM)
(Pixel Tests, Framebuffer updates etc)

Rasterizer (RS)

Primitive Assembler

Figure 21 DX11 pipeline - API view

22

 Geometry Processing Pipeline

This stage the primitive vertices are transformed from the object space to the screen space. This involves
two separate matrix multiplications. The model-view matrix takes the vertices to the view space where they
are lit. This is a direct coordinate transformation. The coordinate transformations are discussed in Appendix
Error! Reference source not found..

The projection matrix does the perspective projection (focus on the perspective projection and ignore the
orthographic projection for now), and delivers the vertices in the screen space.

The OpenGL projection matrix goes somewhat beyond doing mere perspective projection. The OpenGL
projection matrix is discussed in greater detail in Appendix Error! Reference source not found..

This stage involves three steps:

a. Per-triangle step: This is called the “triangle setup” and involves calculating a series of
parameters such as the slopes the triangle sides etc which are used in the next two steps.

b. Per-span step: This is called the “edge walk”. During this step, the triangle is decomposed into
several horizontal spans.

c. Per-pixel step: In this step, each span is rasterized into a series of fragments by interpolating
the colors and texture coordinates along the spans.

We note that the rasterization stage is the point in the pipeline where the processing shifts from the object
space to image space.

 Per Fragment Pipeline Operations

There are three main operations here:

1. Texturing,
2. Color Sum
3. Fog.

Texturing: Involves sampling and filtering the textures.

Color sum: When the fragment enters this stage, it will have two sets of colors: 𝐶𝑝𝑟𝑖 = (𝑅𝑝, 𝐺𝑝 , 𝐵𝑝, 𝐴𝑝)

and 𝐶_ sec = (𝑅𝑠, 𝐺𝑠 , 𝐵𝑠, 𝐴𝑠). In the color sum stage, the two sets are combined to produce a single set of

colors 𝐶, as per the relation:𝐶 = (𝑅𝑝 + 𝑅𝑠, 𝐺𝑝 + 𝐺𝑠 , 𝐵𝑝 + 𝐺𝑠, 𝐴𝑝). The 𝐴𝑠 component is not used. Following

this summing, the components are normalized to [0, 1.0] range.

Color sum is a post-texturization process and the input primary color might have been modified by the
texture mapping, if the texturing is enabled in the pipeline.

The algorithm for computing the colors coming in to the rasterization phase is discussed in the section xxxxx

Fog:

23

Per Fragment Framebuffer Operations

 Guardband Clipping

In geometry processing, there are two distinct types of operations:

1. Vertex Operations: apply to each vertex regardless of which primitive it is part of. Examples:
normalizing the length of a vector, transforming the vertex/texture coordinates between different
spaces, perspective division (or inverse perspective division) etc.

2. Primitive Operations: Needs to operate on the entire primitive. There are two of these: clipping
primitives against the frustum and back-face culling of primitives. Neither of these can be
accomplished without full information on primitives. (Back face culling is done by computing the sign
of the area of the primitive in the screen space. In any case, vertices do not have a “face”. Only a
primitive does.)

 Bibliography

1. Clipping using homogeneous coordinates. Blinn, James F. and Newell, Martin E. 1978. ACM
SIGGRAPH Computer Graphics. Vol. 12, pp. 245-251.

