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1.      Pipeline Overview  

The fundamental problem of rendering is to take as input a series of coordinates and map that to pixels on 
the screen, modulated by the lighting equations.  In addition to the coordinates of the primitives, the input 
also includes associated lighting data such as colors, textures, material properties etc. 

 

 

Rendering Sequence:  The sequence of instructions generated by the API level program is what we refer to 
as the “rendering sequence”.  From the API level program, the rendering sequence is generated by the run-
time, undergoes a series of transformation and is eventually handed off to the graphics hardware. 

The exact transformations are specific to the API’s and the ultimate rendering sequence generated is specific 
to the graphics hardware. 

Graphics Stack:  The system – hardware and software – that is responsible for producing the first iteration 
of the rendering sequence and eventually producing the pixels seen on the screen is what we call the 
Graphics Stack. 
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Figure 1    Illustration of the Rendering Problem 
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Figure 2     Some graphics stack representations 
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 Classic Rendering Pipeline 

“Classic” in this context means “OpenGL” because at first there was only OpenGL fixed function rendering 
pipeline (i.e. no programmable shaders). 

Figure 4 shows a block diagram of an early version of OpenGL.  A lot of the fundamental features of this 
continue to be true today: 

1. Operations on vertices, pixels, fragments and textures are orthogonal. 
2. Symmetry in imaging and geometry paths. 
3. Circular paths within the pipeline. 
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Figure 3  Sequence of transformations & operations for 3D rendering of primitives 
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Figure 4    A block diagram of an early version of OpenGL 
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OpenGL specification did not (does not) provide a model implementation; rather specifies what results of 
rendering should be and not how they should be computed.  So any implementation would a possible 
compliant implementation. 

Notice two distinct stages of implementation in the following: 

1. the geometry processing pipeline: up to (but excluding) the Triangle Setup, 
2. the rasterization pipeline: from Triangle Setup till the end of the pipeline. 
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Figure 5    A more advanced, early OpenGL (fixed function) pipeline 
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rendering 
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1.1.1 Notes on Figure 6 

1. The perspective transformation is split into two parts: 1. the perspective projection and2. the 

perspective division.  The perspective projection transforms the vertices from {Camera} to 

{Perspective} or the homogeneous screen space.  Then the perspective division transforms it to 

Euclidian {Screen}. 

The {Object} → {Homogeneous Screen} is an affine transformation.  But the {Homogeneous Screen} 

→ {Euclidian} back is not an affine transformation.  This is the root of the “texture interpoliatoin 

problem”.  To convert the triangle into pixel coordinates, we project the coordinates fo the triangle to 

the {Screen}.  It is a projective transfomration.  While in {Homogeneous Screen} coordinates, we 

need to interpolate the texture coordinates between the two vertices.  We cannot start with the 

texture coordinates in {Texture} of the two vertices and linearly interpolate to get the texel for each 

pisel between the two vertices.  That is not going to work as {Homogeneous Screen} → {Euclidean 

i.e. Texture} is not affine.  The texture needs to be interpolated using “Rational Linear Interpolation”. 

 

In Figure 7, we need to assign texls to each pixel based on ( 𝑥𝑠 , 𝑦𝑠 ) of the pixel.  We know 

( 𝑥𝑠 0, 𝑦
𝑠
0) → (𝑢0, 𝑣0)  and ( 𝑥𝑠 1, 𝑦

𝑠
1) → (𝑢1, 𝑣1).  Ignoring the bilinear interpolation for the moment, if 

we have to linearly interpolate the texture coordiantes (𝑢0, 𝑣0) and (𝑢1, 𝑣1)    to determine the texel 

associated with certain ( 𝑥𝑠 , 𝑦𝑠 ), we cannot map linearly ( 𝑥𝑠 , 𝑦𝑠 ) → (
(𝑢1−𝑢_0)

( 𝑥𝑠 1− 𝑥𝑠 0)
( 𝑥𝑠 − 𝑥𝑠 0),

(𝑣1−𝑣_0)

( 𝑦𝑠 1− 𝑦𝑠 0)
( 𝑦𝑠 − 𝑦𝑠 0)).  This will not work.  The pixel coordinates from the {Homogeneous Screen} do 

not map linearly to {Texture} space, as the transformation to {Homogeneous Screen} from {Object} is 
a projective transformation.  However we do know that ( 𝑥/𝑤𝑠 , 𝑦/𝑤𝑠 ) map linearly to (𝑢0, 𝑣0) and 

(𝑢1, 𝑣1).  So we need to interpolate as: 
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Figure 7    The texture interpolation problem - we need to map textures specified in the 
{Texture} to the triangle that is specified in {Object} but projected to {Homogeneous 
Screen} space which is measured in pixel units   
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We will run into a similar issue when a primitive is clipped.  The texture coordinates are specified for 

the entire primtive, and if part of it is clipped, the texture coordinates need to be interpolated to 

assign new texture coordintates to the clipped vertex.  This is illustrated in Figure 8. 

 

 
 

2. The OpenGL perspective projection transformation combines a few more operations beyond the 

perspective transformation and those operations are shown in shaded color in Figure 11. 
3.  
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Figure 8    When a primitive is clipped, we need to interpolate the texture coordinates 
using “Rational Interpolation” and determine the new texture coordinates for the new 
vertex introduced.  Though the above situation will result in two new vertices in place of 
one that is outside, we have marked up only one of them in the Figure. 
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Figure 9  {View} and {NDC} Systems – the redundant flipping of z-axis between {View} and {NDC} 
is for historic reasons – has no real value it and in implementations does not add extra overhead. 
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Figure 9  {View} and {NDC} Systems shows the various coordinate spaces that the geometric primitives are 
transformed through as they traverse through the pipeline.  In this document we indicate the coordinate 
spaces either explicitly as in “Perspective Space” or by just using the name of the coordinate space 
surrounded by curly braces as in “{Perspective}”.  To refer to a coordinate in a particular space we use the 

super-prefix notation such as (
𝑣𝑝
𝑥,

𝑣𝑝
𝑦,

𝑣𝑝
𝑧) for coordinates (𝑥, 𝑦, 𝑧)in the {Viewport}. 

 
The coordinate spaces which are more frequently used in this document along with the notations used to 
represent them are given in Table 1 
 

Table 1  Coordinate systems frequently used document 

Coordinate 
Space with 
equivalent 

names 

Representation for 
coordinates 

Immediate 
previous 

coordinate 
space in the 

pipeline 

Transformation path from the 
immediate previous 

coordinate space 

World space or 
{World} 

(𝑥, 𝑦, 𝑧) none none 
 

Texture Space 
or {Texture} 

(𝑢, 𝑣) or (𝑢, 𝑣, 𝑠, 𝑡) none none 

Homogeneous 
Texture space 
or {HTexture} 

( ℎ
𝑢,

ℎ
𝑣) or 

( ℎ
𝑢,

ℎ
𝑣,

ℎ
𝑠,

ℎ
𝑡) 

{Texture} (Projective transformation)  Not 
needed. 

View space or 
{View}, 
also {Camera}, 
{Eye},  

(𝑣 𝑥,
𝑣
𝑦,

𝑣
𝑧)  

for vertex; 
(𝑣 𝑢,

𝑣
𝑣) for texture 

{Object} Modeling and viewing matrices 

Perspective 
space or 
{Perspective}, 
also {Clip}, 
{Homogeneous 
Screen}, 
{Projective} 

(
𝑝
𝑥,

𝑝
𝑦,

𝑝
𝑦) for vertex;  

(
𝑝
𝑢,

𝑝
𝑣) for texture 

{View} Perspective projection matrix 

3D Screen 
space 
{3D Screen} 

(𝑠 𝑥,
𝑠
𝑦,

𝑠
𝑧)  {Perspective} Perspective division i.e. divide 

by w 

NDC space or 
{NDC} 

(𝑛𝑑𝑐𝑥,
𝑛𝑑𝑐
𝑦,

𝑛𝑑𝑐
𝑧)  {3D Screen} Invert z- coordinate and scale 

the view volume to 
[−1, −1, −1] × [1,1,1] 

Viewport space 
or {Viewport} 

(
𝑣𝑝
𝑥,

𝑣𝑝
𝑦,

𝑣𝑝
𝑧)  {NDC} Map (

𝑣𝑝
𝑥,

𝑣𝑝
𝑦) to 

[
𝑣𝑝
𝑥𝑜𝑟𝑔,

𝑣𝑝
𝑦
𝑜𝑟𝑔
] × [𝑣𝑝𝑥𝑜𝑟𝑔 +

𝑉𝑃𝑤𝑖𝑑𝑡ℎ,
𝑣𝑝
𝑦
𝑜𝑟𝑔
+ 𝑉𝑃ℎ𝑒𝑖𝑔ℎ𝑡], with 

the z-value that is closest to 
origin of all possible pixels along 
the z-axis 

 
 
For a coordinate system, using a suitable name that is indicative of its nature or function makes it easier to 
analyze the given problem.  And for some of the systems, the suitable name depends on the context.  Thus 
we end up with multiple names for some of these systems and we use different names for the same system, 
depending on the context.  Some transformations such as inverting the Z-axis to go from {3D Screen} to 
{NDC} are there because of legacy reasons.  They have not disappeared because they do not add additional 
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computational overhead to the pipeline as such transformations are integrated into a matrix multiplication 
that anyway has to be carried out. 
 
In the notation outlined above the space that a coordinate belongs is unambiguously identified with the 
prefixed superfix to the coordinate. 
 

 Relationships and tranformations between different coordinate 

systems 

We also deal with the coordinate space associated with the textures, in addition to the ones mentioned 
earlier.   

Texture coordinates, as they are specified are fractional – that is, they are within the range [0, 1.0].  So within 
two coordinate systems related by affine transformations, the texture coordinates do not change – that is, 
they are identify transformations. 

In the graphics pipeline the primitives start from either the object space or the view space.  They undergo a 
projective transformation.  The projected vertices are transformed to the screen space and rasterized in the 
screen space.   

1. It is not simple due to projective transformation which is different from a rigid transformation such as 
modeling and viewing transformations.   
 

2. We have two groups of coordinate spaces separated by the projective transformation.  Since the 
projective transformation is not an affine transformation, it is not possible to move from a coordinate 
system in one group to any one in the other by exclusively using affine transformation.  But within a 
group it is possible to transform the vertex element to different systems by using affine 
transformations exclusively.  Two coordinate systems between which we can transition with 
exclusively using affine transformations are said to be affine with each other (2). 

3. Explain the diagram below. 
4. Refer to the Appendix on Olano paper. 
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Figure 10  Six different vector spaces used in 3D pipeline 
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The vector spaces mentioned in  Figure  are explained in the following table.  

Table 2  Transformation modes for transforming between different vector spaces used in the 3D 
pipeline 

Source vector space Destination vector space Transformation mode 

Object Space Texture Space Affine: Linear/Bilinear 

Object Space World Space Affine: Model Matrix (rotation, 
translation, scale are all affine 
matrices) 

Object Space Homogeneous Screen Space Affine: Multiply by the View Matrix that 
often includes the perspective 
projection 

Texture Space Homogeneous Screen Space Affine:  This is just an identity 
transformation which is an affine 
matrix* 

Texture Space Homogeneous Texture Space Projective:  Need to project to a space 
that is affine with screen space: needs 

a divide by w~ .** 

Homogenous Screen Space Screen Space Projective: the perspective divide: 

divide by 
𝑝
𝑤**. 

Homogeneous Texture 
Space 

Texture Space Projective: Inverse of the perspective 
divide: this is a multiply by w 

Screen Space Homogeneous Space Projective: Inverse of the perspective 
divide: this is a perspective multiply by 
w 

*This is an identity transformation - always: to go from a Euclidean to homogeneous coordinates is an 
identity transformation.  It is when we switch spaces – say from the Euclidean space to a projective space 
that we have a more complex operation which includes a perspective divide.  Homogeneous coordinates are 
also very useful in Euclidean space also: they make all affine operations to be represented as multiplication 
by [4x4] matrices.   

**For efficiency, it should be “multiply by 1/w” rather than a divide by w. 

 Overviews of the rendering Pipeline 
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Figure 11  Interactive Rendering System: Overview 
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Figure 12  Classic OpenGL rendering pipeline 

 

Figure 13  OpenGL Fixed Function Rendering Pipeline 
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Notice the correlation between the three of the four components of the Associated Data above and the three 
processing stages after the rasterization: Texturing, Color Sum and Fog.  The fourth one: Edge Flag data is 
used in the rasterization process. 
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Figure 14  Classic OpenGL rendering pipeline showing the data flow paths 
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Figure 15  Classic OpenGL rendering pipeline showing  pre-rasterization setup of data 

 

Primitive 

Assembly & 

Processing

Point 

Rasterization

Primitives

Bitmaps

Draw Pixels

Line Rasterization
Polygon 

Rasterization

Pixel Rectangle 

Rasterization

Bitmap 

Rasterization

Fragments
Fragment  

Program

shankar.swamy@gmail.com

Fragment  

Program

Current Raster 

Position

Color & Coloring

Assembled, 

Clipped Primitive

 

Figure 16  OpenGL programmable rendering pipeline showing the data flow paths 
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Figure 17  IV Generation programmable pipeline sequence of operations 
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Figure 18  An overview of DX10 pipeline 
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Notice that the Vertex and Index buffers on one hand, and the Textures and Render Targets on the other 

hand are separate.  (Former is streamed and the latter is sampled.) 
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Figure 19  DX9 programmable pipeline - API view 
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 Rasterization  

 
In DX10 model, there is just video memory.  Programmer has the flexibility to reinterpret the video memory 

as needed.  However, the distinctive streaming and sampling of buffers is still retained. 

 

The Stream Output Stage allows for the primitives from the Geometry Shader to be streamed back into the 

pipeline through the video memory. 
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Figure 20  DX10 pipeline - API view 
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Figure 21  DX11 pipeline - API view 
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 Geometry Processing Pipeline 

This stage the primitive vertices are transformed from the object space to the screen space.  This involves 
two separate matrix multiplications.  The model-view matrix takes the vertices to the view space where they 
are lit.  This is a direct coordinate transformation.  The coordinate transformations are discussed in Appendix 
Error! Reference source not found.. 

The projection matrix does the perspective projection (focus on the perspective projection and ignore the 
orthographic projection for now), and delivers the vertices in the screen space.   

The OpenGL projection matrix goes somewhat beyond doing mere perspective projection.  The OpenGL 
projection matrix is discussed in greater detail in Appendix Error! Reference source not found.. 

 

This stage involves three steps: 

a. Per-triangle step: This is called the “triangle setup” and involves calculating a series of 
parameters such as the slopes the triangle sides etc which are used in the next two steps. 

b. Per-span step:  This is called the “edge walk”.  During this step, the triangle is decomposed into 
several horizontal spans. 

c. Per-pixel step:  In this step, each span is rasterized into a series of fragments by interpolating 
the colors and texture coordinates along the spans.   

We note that the rasterization stage is the point in the pipeline where the processing shifts from the object 
space to image space.  

 

 Per Fragment Pipeline Operations 

There are three main operations here: 

1. Texturing, 
2. Color Sum 
3. Fog. 

Texturing:  Involves sampling and filtering the textures. 

Color sum: When the fragment enters this stage, it will have two sets of colors: 𝐶𝑝𝑟𝑖 = (𝑅𝑝, 𝐺𝑝 , 𝐵𝑝, 𝐴𝑝) 

and 𝐶_ sec = (𝑅𝑠, 𝐺𝑠 , 𝐵𝑠, 𝐴𝑠).  In the color sum stage, the two sets are combined to produce a single set of 

colors 𝐶, as per the relation:𝐶 = (𝑅𝑝 + 𝑅𝑠,  𝐺𝑝 + 𝐺𝑠 ,  𝐵𝑝 + 𝐺𝑠, 𝐴𝑝).  The  𝐴𝑠 component is not used.  Following 

this summing, the components are normalized to [0, 1.0] range.   

Color sum is a post-texturization process and the input primary color might have been modified by the 
texture mapping, if the texturing is enabled in the pipeline. 

The algorithm for computing the colors coming in to the rasterization phase is discussed in the section xxxxx 

Fog:   
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Per Fragment Framebuffer Operations 

 Guardband Clipping 

In geometry processing, there are two distinct types of operations: 

1. Vertex Operations: apply to each vertex regardless of which primitive it is part of.  Examples: 
normalizing the length of a vector, transforming the vertex/texture coordinates between different 
spaces, perspective division (or inverse perspective division) etc. 

2. Primitive Operations: Needs to operate on the entire primitive. There are two of these: clipping 
primitives against the frustum and back-face culling of primitives.  Neither of these can be 
accomplished without full information on primitives.  (Back face culling is done by computing the sign 
of the area of the primitive in the screen space.  In any case, vertices do not have a “face”.  Only a 
primitive does.) 
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