
Iterator Concepts

 indirectly_readable specifies that a type is indirectly readable by applying operator *

 indirectly_writable specifies that a value can be written to an iterator's referenced
object

 weakly_incrementable specifies that a semiregular type can be incremented with
pre- and post-increment operators

 incrementable specifies that the increment operation on a
weakly_incrementable type is equality-preserving and that
the type is equality_comparable

 input_or_output_iterator specifies that objects of a type can be incremented and
dereferenced

 sentinel_for specifies a type is a sentinel for an
input_or_output_iterator type

 sized_sentinel_for specifies that the - operator can be applied to an iterator and a
sentinel to calculate their difference in constant time

 input_iterator specifies that a type is an input iterator, that is, its referenced
values can be read and it can be both pre- and post-incremented

 output_iterator specifies that a type is an output iterator for a given value type,
that is, values of that type can be written to it and it can be both
pre- and post-incremented

 forward_iterator specifies that an input_iterator is a forward iterator,
supporting equality comparison and multi-pass

 bidirectional_iterator specifies that a forward_iterator is a bidirectional iterator,
supporting movement backwards

 random_access_iterator specifies that a bidirectional_iterator is a random-access
iterator, supporting advancement in constant time and
subscripting

 contiguous_iterator specifies that a random_access_iterator is a contiguous
iterator, referring to elements that are contiguous in memory

 indirectly_readable specifies that a type is indirectly readable by applying operator *

 indirectly_writable specifies that a value can be written to an iterator's referenced
object

 weakly_incrementable specifies that a semiregular type can be incremented with
pre- and post-increment operators

 incrementable specifies that the increment operation on a
weakly_incrementable type is equality-preserving and that
the type is equality_comparable

 input_or_output_iterator specifies that objects of a type can be incremented and
dereferenced

Iterator Adaptors

 reverse_iterator iterator adaptor for reverse-order traversal
(class template)

 make_reverse_iterator creates a std::reverse_iterator of type inferred from the argument
(function template)

 move_iterator

iterator adaptor which dereferences to an rvalue reference
(class template)

 move_sentinel

sentinel adaptor for use with std::move_iterator
(class template)

 make_move_iterator

creates a std::move_iterator of type inferred from the argument
(function template)

 common_iterator

adapts an iterator type and its sentinel into a common iterator
type
(class template)

 default_sentinel_t

default sentinel for use with iterators that know the bound of their
range
(class)

 counted_iterator

iterator adaptor that tracks the distance to the end of the range
(class template)

 unreachable_sentinel_t

sentinel that always compares unequal to any
weakly_incrementable type
(class)

 back_insert_iterator iterator adaptor for insertion at the end of a container
(class template)

 back_inserter creates a std::back_insert_iterator of type inferred from the
argument
(function template)

 front_insert_iterator iterator adaptor for insertion at the front of a container
(class template)

 front_inserter creates a std::front_insert_iterator of type inferred from the
argument
(function template)

 insert_iterator iterator adaptor for insertion into a container
(class template)

 inserter creates a std::insert_iterator of type inferred from the argument
(function template)

Stream Iterators

 istream_iterator input iterator that reads from std::basic_istream
(class template)

 ostream_iterator output iterator that writes to std::basic_ostream
(class template)

 istreambuf_iterator input iterator that reads from std::basic_streambuf
(class template)

 ostreambuf_iterator output iterator that writes to std::basic_streambuf
(class template)

 istream_iterator input iterator that reads from std::basic_istream
(class template)

Iterator Operations

Note: A niebloid is a funciton object that disables Koenig lookup (aka Argument Dependent Lookup).

advance

advances an iterator by given distance
(function template)

distance

returns the distance between two iterators
(function template)

 next

increment an iterator
(function template)

 prev

decrement an iterator
(function template)

 ranges::advance

advances an iterator by given distance or to a given bound
(niebloid)

ranges::distance

returns the distance between an iterator and a sentinel, or between the
beginning and end of a range
(niebloid)

 ranges::next

increment an iterator by a given distance or to a bound
(niebloid)

 ranges::prev

decrement an iterator by a given distance or to a bound
(niebloid)

Non-member functions that provide generic

interface for containers

Prefer these wherever possible.

 begincbegin

returns an iterator to the beginning of a container or array
(function template)

 endcend

returns an iterator to the end of a container or array
(function template)

 rbegincrbegin

returns a reverse iterator to a container or array
(function template)

 rendcrend

returns a reverse end iterator for a container or array
(function template)

 sizessize

returns the size of a container or array
(function template)

 empty

checks whether the container is empty
(function template)

 data

obtains the pointer to the underlying array
(function template)

