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Appendix 4:  OpenGL Projection Matrix 
The goal of this article is not to provide a mathematically vigorous derivation of the projection matrix.  The 
goal is to provide an explanation that helps understand the matrix. 

The projection matrix transforms the vertices from the view space to the NDC space, through a perspective 
projection.  The geometry setup that conforms with that pipeline is shown in Figure 5-1. 

 

 

Essentially the OpenGL projection matrix does three transformations: 

1. Take the vertex from the view space apply projection transformation to the vertex 
2. Apply perspective division 
3. Transform the vertices to the NDC space. 

Splitting up the perspective projection into a projection step and a separate perspective division has two 
advantages. 

First, this enables clipping the primitives in the homogeneous space which is affords the most efficient 
clipping algorithm.  What is lost in efficiency by the extra perspective division is more than offset by the gains 
made by clipping the primitives in the homogeneous space. 
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Figure 8-8  View frustum geometry 
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Secondly, for the projection transformation the same function in the code or the same hardware used for 
orthographic projection can be reused. 

The view frustum in the view space, the source of the vertices and the NDC space, the destination of the 
vertices after the projection transformation are shown in Figure 5-2. 

NDC space is a cube bounded by (-1, -1, -1) x (1, 1, 1,).  Notice that the sense of z-direction in the view 
space (frustum) and the NDC space are opposite to each other, which means that during the projection 
transformation, the z-axis needs to be flipped to reverse the sign.  The two spaces projected on to the plane 
looking down along the negative x-axis are shown in Figure 5-3.  An almost identical Figure for the projection 
on to the plane looking down along the y-axis is not shown. 

From the Figure, we notice that (r, t, -n) in {View} maps to {1, 1, -1), and (r, t, -f) in {View} maps to (1, 1, 1). 
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Figure 8-9  View frustum and the NDC space 
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We seek the matrix that transforms a vertex in the view space to the NDC space with perspective projection: 

 

[

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙
𝑚 𝑛 𝑜 𝑝

]

[
 
 
 

𝑝𝑣
𝑥

𝑝𝑣
𝑦

𝑝𝑣
𝑧

1   ]
 
 
 

=  

[
 
 
 
 

𝑝𝑛𝑑𝑐
𝑥

𝑝𝑛𝑑𝑐
𝑦

𝑝𝑛𝑑𝑐
𝑧

1   ]
 
 
 
 

 

A 4.1  

 

and equivalently:   

 𝑀𝑝𝑟𝑜𝑗 𝑝𝑣 = 𝑝𝑛𝑑𝑐  
A 4.2  

 

The 4x4 matrix 𝑀𝑝𝑟𝑜𝑗 is the OpenGL projection matrix, 𝑝𝑣  is the vector in the view space and 𝑝𝑛𝑑𝑐  is the 

vector transformed to the NDC space. 

A perspective projection is termed asymmetric if the 𝑊 ≠ 𝐻 or 𝜃𝑦 ≠
𝜋

2
  or both (𝑊,𝐻 and 𝜃𝑦 are shown in 

Figure 5-3 and Figure 5-4). 

First consider the symmetric projection.  That is, 𝜃𝑥 = 𝜃𝑦 =  𝜋/4, and 𝑊 = 𝐻 i.e. a square cross-section for 

the truncated pyramid. 

We start with a matrix that will result in the perspective or the foreshortening.  The matrix that produces 
foreshortening along the z-axis is given by: 

 𝑀𝑝 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

] A 4.3  

The matrix given in equation A 4.5 the perspective matrix for foreshortening along the z-axis.  However in 
OpenGL the perspective matrix is taken as: 

(+1, -1, -1)

(+1, +1, -1)

(+1, -1, +1)
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Figure 8-10  View frustum and the NDC space projected on to x-plane 
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 𝑀𝑝 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0

] 

A 4.4  

 

In the OpenGL convention, {View} the z-coordinate is directed away from the scene which is the opposite 
sense of the z-axis in the conventional z-direction in the {Perspective}. For the perspective to be along –z-
axis, we need to flip the z-coordinate and hence the minus sign in the perspective term (fourth row of the 
matrix) in A 4.4. 

The matrix should essentially transform the truncated pyramid into a rectangular box (Figure 5-2Error! 
Reference source not found. and Figure 5-3).  We have 

 [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 0

] [

𝑥
𝑦
𝑧
1

]  =   [

𝑥
𝑦
𝑧

−𝑧

]  ≡  

[
 
 
 
 
 −

𝑥

𝑧

−
𝑦

𝑧
−1
1 ]

 
 
 
 
 

 
A 4.5  

 

Using the above matrix, the eight corners of the truncated pyramid tans from as shown in the table below: 

Notice that this maps vertex pairs (0, 4), (1, 5), (2, 6), (3, 7) each to the same point.   For the transformation, 
this implies that all points along a line from the origin, between 𝑧 =  −𝑛 to 𝑧 =  −𝑓, all map to the same point 
after the transformation.  Referring to Figure 5-3, this means, for example, that all points on the line segment 

𝑃𝑄̅̅ ̅̅  would map to 𝑃⃑⃗.   So all points within the truncated viewing pyramid are projected properly to the 

Table 2  Coordinates of the corners of the truncated pyramid forming the view frustum 

 

Vertex 
Number 

𝑝𝑣𝑖𝑒𝑤    𝑀𝑝 𝑝𝑣𝑖𝑒𝑤    

0 (l, t, -n, 1) (
𝑙

𝑛
, 

𝑡

𝑛
, -1, 1) 

1 (l, b, -n, 1) (
𝑙

𝑛
, 

𝑏

𝑛
, -1, 1) 

2 (r, b, -n, 1) (
𝑟

𝑛
, 

𝑏

𝑛
, -1, 1) 

3 (r, t, -n 1) (
𝑟

𝑛
, 

𝑡

𝑛
, -1, 1) 

4 (
𝑓∗𝑙

𝑛
, 

𝑓∗𝑡

𝑛
, -f, 1) (

𝑙

𝑛
, 

𝑡

𝑛
, -1, 1) 

5 (
𝑓∗𝑙

𝑛
, 

𝑓∗𝑏

𝑛
, -f, 1) (

𝑙

𝑛
, 

𝑏

𝑛
, -1, 1) 

6 (
𝑓∗𝑟

𝑛
, 

𝑓∗𝑏

𝑛
, -f, 1) (

𝑟

𝑛
, 

𝑏

𝑛
, -1, 1) 

7 (
𝑓∗𝑟

𝑛
, 

𝑓∗𝑡

𝑛
, -f, 1) 

 

(
𝑟

𝑛
, 

𝑡

𝑛
, -1, 1) 
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rectangle at the near 𝑧 =  −𝑛 plane and by scaling that rectangle we have the properly perspective projected 
transformation.  This will suffice if we do not need any form of visible surface determination.   

However we do need the visible surface determination for rendering, and hence instead of mapping the 
points within the truncated viewing pyramid to a plane, we need to map them to the box bounded by 
(−1,−1,−1)  ×  (1, 1, 1) - Figure 5-2.  More precisely, we would like 𝑧 = −𝑛 to be mapped to -1 and 𝑧 =  −𝑓 
to be mapped to +1.  To achieve this without affecting the transformations of the x and y coordinates in the 
𝑀𝑝𝑟𝑜𝑗 matrix, we have to parameterize the elements (3,3) and (3, 4) of the matrix.  Say, the two are 

respectively parameterized a 𝑎 and 𝑏.  We have: 

 𝑀𝑝 = [

1 0 0 0
0 1 0 0
0 0 𝑎 𝑏
0 0 −1 0

] 

A 4.6  

 

With the matrix thus modified, the 𝑧 −coordinate now transforms as: 𝑧 →
𝑎𝑧+𝑏

−𝑧
, which gives – 𝑛 →

−𝑎𝑛+𝑏

𝑛
, and 

– 𝑓 →
−𝑎𝑓+𝑏

𝑓
.  Given that we would like these points to map to -1 and +1 respectively, we should have:  

 

−𝑎𝑛 + 𝑏

𝑛
=  −1 

−𝑎𝑓 + 𝑏

𝑓
=  +1  

A 4.7  

 

which give: 

 

𝑎 =  −
𝑓 + 𝑛

𝑓 − 𝑛
 

𝑏 =  −
2𝑓𝑛

𝑓 − 𝑛
 

A 4.8  

 

This gives: 

 𝑀𝑝 = 

[
 
 
 
 
1 0 0 0
0 1 0 0

0 0 −
𝑓 + 𝑛

𝑓 − 𝑛
−

2𝑓𝑛

𝑓 − 𝑛
0 0 −1 0 ]

 
 
 
 

 
A 4.9  

 

With this matrix any point in the truncated view pyramid transforms as 

 

 

[
 
 
 
 
1 0 0 0
0 1 0 0

0 0 −
𝑓 + 𝑛

𝑓 − 𝑛
−

2𝑓𝑛

𝑓 − 𝑛
0 0 −1 0 ]

 
 
 
 

[

𝑥
𝑦
𝑧
1

]  =   

[
 
 
 
 

𝑥
𝑦

−
𝑧

(𝑓 − 𝑛)
{(𝑓 + 𝑛) +

2𝑓𝑛

𝑧
}

−𝑧 ]
 
 
 
 

 

  

≡ 

[
 
 
 
 
 
 −

𝑥

𝑧

−
𝑦

𝑧
1

(𝑓 − 𝑛)
{(𝑓 + 𝑛) +

2𝑓𝑛

𝑧
}

1 ]
 
 
 
 
 
 

 

A 4.10  

 

The equation A 4.10 assumes that the axis of the view frustum is aligned along the –z-axis as shown in 
Figure 5-1.  However a more generic case is shown in Figure 5-4. 
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The figure shows two views of a view frustum which is not aligned with the z-axis.  But matrix 𝑀𝑣𝑖𝑒𝑤 as given 
in equation A 4.10 holds for a view frustum that is aligned with its axis coincident with the z-axis.  Before we 
apply the transformation given by equation A 4.10 we need to transform the view frustum to make its axis 
coincidental with the z-axis.   
 
Notice in Figure 5-4 – A and B, that the tops of the original and the transformed frustums do not move.  For 
the rest of the points in the original frustum, the movement is proportional to its z-coordinate.  This shearing 
transformation takes the vertices bounding the truncated view frustum at the 𝑧 =  −𝑛  to transform as shown 
in the table below. 
 
 
Notice that this shearing transformation leaves the z-coordinate invariant and thus this is a shearing along 
the x- and y-directions.  Thus any point within the asymmetric frustum is should first be transformed by the 
matrix for shearing along the x- and y-directions as shown below. 

 [

1 0 𝛼 0
0 1 𝛽 0
0 0 1 0
0 0 0 1

] [

𝑥
𝑦
𝑧
1

]  =   [

𝑥 + 𝛼𝑧
𝑦 + 𝛽𝑧

𝑧
1

]  
A 4.11  

 

 

Asymmetrical

Perspective

Asymmetrical Perspective that 

is Sheared to align its axis 

coincidental along the -z axis

((r+l)/2, (t+b)/2, -n, 1)

Z = -f

(-1, -1, -1)

(1
, 1

, 1
)

The truncated viewing pyramid after 

the axis of the  viewing frustum has 

been sheared to be aligned to be 

coincidental with the z-axis 

(l, t, -n)

(r, t, -n)

(r, b, -n)

(l, b, -n)

The truncated view pyramid after the 

perspective projection transformation – 

notice the flipped direction of the z-axis

The above rectangular box after 

applying the scaling.  It is a [-1, -

1, -1,] x [1, 1, 1] cubic box

A

B

C

D

E

 

Figure 8-11  Two views of an asymmetric perspective projection view frustum 
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With, say (𝑙, 𝑏, −𝑛, 1)  →   (−
𝑟−𝑙

2
, −

𝑡−𝑏

2
, −𝑛, 1) (or one of the other three vertices in the table given earlier), 

we get: 

 
𝛼 = (𝑟 + 𝑙)/2𝑛 
𝛽 = (𝑡 + 𝑏)/2𝑛 

A 4.12  

 
Thus the points in the viewing frustum should first be transformed by the shearing matrix 

 𝑀𝑠ℎ𝑒𝑎𝑟  =  

[
 
 
 
 
 1 0

𝑟 + 𝑙

2𝑛
0

0 1
𝑡 + 𝑏

2𝑛
0

0 0 1 0
0 0 0 1]

 
 
 
 
 

 
A 4.13  

 

 
If the view frustum is first sheared to align its axis with the z-axis and then projected, we get all points inside 
the truncated pyramid to be transformed into a rectangular box, with perspective projection at  𝑧 =  −𝑛 plane.  

For the rectangular box to be the NDC space, we require the box to be bounded by [−1, −1,−1] × [1, 1, 1].  
We need to scale the points so that the resulting box is of appropriate extents, and that scaling should 
happen before the perspective projection for the points to project appropriately.  Further, the scaling is 
needed along the x and y axes only.  The scaling along the z-direction is properly handled by projection 
matrix.  The required matrix has the form: 
 

 
𝑀𝑠𝑎𝑐𝑙𝑒  =   [

𝑆𝑥𝑥 0 0 0
0 𝑆𝑦𝑦 0 0

0 0 1 0
0 0 0 1

] 

 

A 4.14  

 

The so called perspective projection matrix in OpenGL consolidates these three into a single matrix: 

 𝑀𝑝𝑟𝑜𝑗 = 𝑀𝑝 ∗ 𝑀𝑠𝑐𝑎𝑙𝑒 ∗ 𝑀𝑠ℎ𝑒𝑎𝑟 
A 4.15  

 

Table 3  Asymmetric perspective vertices correlated with vertices after shearing transformation 

 

Vertices from the asymmetric perspective Vertices after the shearing transformation 

(𝑙, 𝑡, −𝑛, 1) 
(−

𝑟 − 𝑙

2
,
𝑡 − 𝑏

2
,−𝑛, 1) 

(𝑙, 𝑏, −𝑛, 1) 
(−

𝑟 − 𝑙

2
,−

𝑡 − 𝑏

2
,−𝑛, 1) 

(𝑟, 𝑏, −𝑛, 1) 
(
𝑟 − 𝑙

2
,−

𝑡 − 𝑏

2
,−𝑛, 1) 

(𝑟, 𝑡, −𝑛, 1) 
(
𝑟 − 𝑙

2
,
𝑡 − 𝑏

2
,−𝑛, 1) 
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= 

[
 
 
 
 
1 0 0 0
0 1 0 0

0 0 −
𝑓 + 𝑛

𝑓 − 𝑛
−

2𝑓𝑛

𝑓 − 𝑛
0 0 −1 0 ]

 
 
 
 

∗  [

𝑆𝑥𝑥 0 0 0
0 𝑆𝑦𝑦 0 0

0 0 1 0
0 0 0 1

]

∗

[
 
 
 
 
 1 0

𝑟 + 𝑙

2𝑛
0

0 1
𝑡 + 𝑏

2𝑛
0

0 0 1 0
0 0 0 1]

 
 
 
 
 

 

      = 

[
 
 
 
 
 𝑆𝑥𝑥 0 𝑆𝑥𝑥

𝑟+𝑙

2𝑛
0

0 𝑆𝑦𝑦 𝑆𝑦𝑦
𝑡+𝑏

2𝑛
0

0 0 −
𝑓+𝑛

𝑓−𝑛
−

2𝑓𝑛

𝑓−𝑛

0 0 −1 0 ]
 
 
 
 
 

 

 
In the above equation only unknowns are 𝑆𝑥𝑥 and 𝑆𝑦𝑦.  To fix up those values, we notice that this matrix 

should transform all the points in the truncated viewing pyramid to within the cubic box bounded by 
[−1,−1,−1] × [1, 1, 1], and we pick a convenient boundary point whose transformation is known – like (l, t, -
n, 1).  This point in the {View} should transform into (-1, -1, -1, 1) in {NDC}. 
 
From equation A 4.15, a generic point (𝑥, 𝑦, 𝑧, 1)  ∈ {𝑁𝐷𝐶} transforms as 

 (−𝑆𝑥𝑥 (
𝑥

𝑧
+

𝑟 + 𝑙

2𝑛
 ) ,   − 𝑆𝑦𝑦  (

𝑦

𝑧
+

𝑡 + 𝑏

2𝑛
) ,

𝑓 + 𝑛

𝑓 − 𝑛
 +

2𝑓𝑛

𝑓 − 𝑛
.
1

𝑧
) 

  
Applying this transformation to x and y coordinates of the point (l, b, -n, 1) gives 

 
−𝑆𝑥𝑥 (

𝑙

−𝑛
+

𝑟+𝑙

2𝑛
 ) = -1 

−𝑆𝑦𝑦  (
𝑦

𝑧
+

𝑡 + 𝑏

2𝑛
) =  −1 

A 4.16  

 

 

These equations yield 𝑆𝑥𝑥 =
2𝑛

𝑟−𝑙
, and𝑆𝑦𝑦 =

2𝑛

𝑡−𝑏
.  This substituted in equation A 4.15 gives 

 𝑀𝑝𝑟𝑜𝑗 =  

[
 
 
 
 
 
 

2𝑛

𝑟 − 𝑙
0

𝑟 + 𝑙

𝑟 − 𝑙
0

0
2𝑛

𝑡 − 𝑏

𝑡 + 𝑏

𝑡 − 𝑏 
0

0 0 −
𝑓 + 𝑛

𝑓 − 𝑛
−

2𝑓𝑛

𝑓 − 𝑛
0 0 −1 0 ]

 
 
 
 
 
 

 
A 4.17  

 

This is the OpenGL perspective projection matrix.  This delivers the vertices from the {Camera/View} space 
to {Clip}. Multiplication by this matrix followed by a perspective division delivers the vertices in the {NDC}.  
That is, if the {Clip} coordinates are ( 𝑥𝑐 ,   𝑦𝑐 ,   𝑧𝑐 ,   𝑤𝑐 ) then {NDC} coordinates are given by 

(
𝑥𝑐

𝑤𝑐  ,
𝑦𝑐

𝑤𝑐  ,
𝑧𝑐

𝑤𝑐  , 1)  ≡ ( 𝑥𝑛𝑑𝑐 , 𝑦𝑛𝑑𝑐 ,   𝑧𝑛𝑑𝑐 , 1 ) . But the above matrix delivers the coordinates from the {View} 

directly into the {NDC} – that is, with the perspective division already done.  Within the {NDC} we can 
determine whether or not the primitive needs to be clipped.  If the clipping becomes necessary, the vertices 
of the primitives need to be taken back to the {Clip} and then clipped and the vertices of the clipped primitive 
need to be transformed back to the {NDC} again. 
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In the pipeline, this is followed up with a viewport transformation.  OpenGL supports the glViewort(…) call 
that takes the viewport origin coordinates, the width and the height as the arguments.  This call determines 
the transformation used to transform the pixel coordinates in {NDC} to viewport pixel coordinates.   
 
The viewport transformation maps the coordinates expressed in units of pixels form the {NDC} to {Viewport}: 

( 𝑥𝑛𝑑𝑐 , 𝑦𝑛𝑑𝑐 ,   𝑧𝑛𝑑𝑐 , 1 )    → ( 𝑥𝑤 , 𝑦𝑤 ,   𝑧𝑤 , 1 ) where ( 𝑥𝑛𝑑𝑐 , 𝑦𝑛𝑑𝑐 ,   𝑧𝑛𝑑𝑐 )  ∈ [−1, 1] and 

█( 𝑥𝑤 ∈ [𝑂𝑥 , 𝑂𝑥 + 𝑝𝑥] @ 𝑦𝑤 ∈ [𝑂𝑦 , 𝑂𝑦 + 𝑝𝑦]   @ 𝑧𝑤 ∈ [0, 1.0] ) 

To get this mapping, we first offset each coordinate by unity so that the range is reset from [-1, 1] to [0, 2].  
Then we scale it appropriately – based on the viewport dimensions for the x- and y- coordinates and to the 
range [0, 1.0] in the last case.  This mapping is given by the transformations 

 

𝑥𝑤 = 𝑂𝑥 +
𝑝𝑥

2
 ( 𝑥𝑛𝑑𝑐 + 1) 

𝑥𝑤 = 𝑂𝑦 +
𝑝𝑦

2
( 𝑦𝑛𝑑𝑐 + 1)     

𝑧𝑤 =
𝑧𝑛𝑑𝑐 +  1

2
 

 

A 4.18  

 

This equation seems simple enough to be more efficient if implemented directly as opposed to being 
implemented as a matrix.  In reality whether it is implemented as a matrix or as a direct transformation 
depends on how the rest of the pipeline is implemented.  Given that the matrix operations themselves are 
implemented as composite of multiply and add operations means most likely this is implemented as a matrix 
operation.  For completeness the viewport transformation matrix is given below. 
 

(-1, 1, -1)
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Figure 8-12  OpenGL Viewport Transformation 
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 𝑀𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 =  

[
 
 
 
 
 
 
𝑝𝑥

2
0 0 𝑂𝑥 +

𝑝𝑥

2

0
𝑝𝑦

2
0 𝑂𝑦 +

𝑝𝑦

2

0 0
1

2

1

2
0 0 0 1 ]

 
 
 
 
 
 

 
A 4.19  

 

 

 

A note on the zbuffer resolution 

The z-coordinate transformed to the {NDC} is given by equation A 4.17 as: 𝑧𝑛𝑑𝑐 =
𝑓+𝑛

𝑓−𝑛
+

2𝑓𝑛

𝑓−𝑛
 𝑧𝑣𝑖𝑒𝑤 .  The 

𝑧𝑛𝑑𝑐  is plotted against 𝑧𝑣𝑖𝑒𝑤  for various values of ‘n’ at a constant value of f – shown below. 

 
 
 

 
  


