Chapter IT
(16) $A=\varepsilon b c$
a. $c=\frac{A}{\varepsilon b}=\frac{0.427}{\left(6130 \mathrm{M}^{-1} \mathrm{c}^{-2}\right)(1.000 \mathrm{eded})}=6.97 \times 10^{-5} \mathrm{M}$
b. $\frac{6.97 \times 10^{-5} \mathrm{M}}{(1 / 10)}=6.97 \times 10^{-4} \mathrm{M}$
c. $5.00 \mathrm{ml} / \frac{6.97 \times 10^{-4} \mathrm{mgl}}{1800 \mathrm{~mL}} / \frac{292.16 \mathrm{~g} / \frac{100 \mathrm{mgg}}{\mathrm{lma} / \mathrm{g}} /=1.02 \mathrm{mg} \mathrm{m}}{1 / 2}$
(18) $A=\varepsilon b c$
a. $\varepsilon=\frac{A}{b c}=\frac{(0.267-0.019)}{(1.00 \mathrm{~mm})\left(3.15 \times 10^{-6} \mathrm{M}\right)}=78730 \mathrm{M}^{-1} \mathrm{cmi}$
b.

$$
c=\frac{\alpha}{\varepsilon b}=\frac{(0.175-0.079)}{\left(78730 \mathrm{~N}^{2} \mathrm{c}_{6} \mathrm{H}^{2}\right)(1.00 \mathrm{c} / 1)}=1.98 \times 10^{-6} \mathrm{M}
$$

(19) a. Absorbance to to known amount of NO_{2}^{-}

$$
=0.967-0.622=0.345
$$

concentration of known $\mathrm{NO}_{2}^{-}=7.50 \times 10^{-3} \mathrm{y}\left(10.0816^{-6} \mathrm{~L}\right)$

$$
\begin{aligned}
& \varepsilon=\frac{A}{b c}=\frac{0.395}{(5.00 \mathrm{~cm})\left(1.39 \times 10^{-66} \mathrm{M}\right)}=\frac{2.5 \times 10^{-5} \mathrm{~mol}}{0.054 \mathrm{~L}}=1.39 \times 10^{-6} \mathrm{M} \\
& =49680 \mathrm{\mu}^{-1} \mathrm{~cm}^{\prime \prime} \\
& \text { b. } \frac{7.50 \times 10^{-8} \mathrm{mal}}{x \mathrm{~mol}}=\frac{0.345}{0.469} \Rightarrow x=1.02 \times 10^{-7} \mathrm{~mol} \mathrm{NO}_{2}^{-} \\
& \left.1.02 \times 10^{-7} \mathrm{~mol} \mathrm{NO}_{2}^{-}\left|\frac{46 \mathrm{~g}}{1 \mathrm{mml}}\right| \frac{10^{6} \mathrm{~kg}}{\mathrm{gg}} \right\rvert\,=4.69 \mathrm{\mu g} \mathrm{NO}_{2}
\end{aligned}
$$

Fluorescence is emission of a photon with
24 an electronic transition from an excited singlet stake to the ground singlet state. The lifetime of the excited singlet state is very short.
Phosphorescence is emmision of a photon with an electronic transition from a triplet state. to a singlet state. The lifetime of the excited triplet stake is relatively long.

Luminescence results after a molecule absorbs
25 light. Chemiluminescence results from the product of a chemical reaction that is in the excited state.

For an excitation pectrom the λ of the spectrometer's 28 light source is varied and light of a specific emission λ is monitored. for an emission spectrum, the excitation λ is held content and the measured emission λ is varied. The excitation spectrum resembles an absorption spectrom because emission is propertional to absorption.

