Chapter 4
24

$$
\text { slope }=-1.299(\pm 0.001) \times 10^{4}
$$

intercept $=3(\pm 3) \times 10^{2}$
5^{24}

$$
\begin{aligned}
& \sum x_{i}=0+2+3=5 \\
& \sum\left(x_{i}^{2}\right)=0^{2}+2^{2}+3^{2}=13 \\
& \sum y_{i}=1+2+3=6 \\
& \sum x_{i} y_{i}=0+4+9=13
\end{aligned}
$$

$$
\begin{array}{rlrl}
m & =\left|\begin{array}{cc}
13 & 5 \\
6 & 3
\end{array}\right| \div\left|\begin{array}{cc}
13 & 5 \\
5 & 3
\end{array}\right|=(39-30) \div(39-25) \\
& =0.643 \\
b & =\left|\begin{array}{cc}
13 & 13 \\
5 & 6
\end{array}\right| \div\left|\begin{array}{cc}
13 & 5 \\
5 & 3
\end{array}\right|=(78-65) \div(39-25) \\
& =0.929 \\
s_{y} & =-\sqrt{\frac{\sum\left(d_{i}^{2}\right)}{n-2}} & d_{1}=1-(0.843 \times 8)+0.929=0.071 \\
s_{y} & =\sqrt{\frac{0.0714}{3-2}} & d_{2}=2-(0.643 \times 2)-0.929=-0.215 \\
& =0.27 & & d_{3}=3-(0.643 \times 3)-0.929=0.142 \\
& =0 .
\end{array}
$$

w, thou measuring the response with respect 28 to a known standard, we do not knew what the response to an unknown quantity represents.

If the negative concentration falls within the 29 known precision of a blank anatys is, this is acceptable. If it is outside the known precision, then the determination of the precision is in error.

30

$$
0.254-0.095=0.169=y
$$

$$
\begin{aligned}
& y=0.01630 x+0.0047 \\
& x=\frac{0.169-0.0047}{0.0163}=10.1 \mathrm{\mu g}
\end{aligned}
$$

31

$$
y=0.61538 x+1.34615
$$

$$
y=2.58
$$

$$
x=\frac{2.58-1.34615}{0.61538}=2.00
$$

*. $S_{x}=\frac{s_{y}}{|m|} \sqrt{\frac{1}{k}+\frac{1}{n}+\frac{(y-\bar{y})^{2}}{m^{2} \sum\left(x_{i}-\bar{x}\right)^{2}}}$

$$
\begin{array}{rlrl}
s_{y} & =0.196 & \bar{y}=(2+3+4+5) / 4=3.5 \\
m & =0.61538 & \bar{x}=(1+3+4+6 / 4=3.5 \\
k & =1 \\
u & =4 & \sum\left(x_{i}-\bar{x}\right)^{2}=(t-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(6-3.5)^{2} \\
& =13
\end{array}
$$

b. if $k=4$

$$
\begin{aligned}
& k=4 \\
& \text { then } 5_{x}=0.26 \quad 2.0 \pm 0.3
\end{aligned}
$$

