Your Name:	Key					
Chemistry 31 – Quantitative Analysis Final Exam, May 20, 2009						
Multiple Choice Circle the one correct answer from the choices listed or give the correct short answer.						
1 (2 points).	To a precision of 2 significant concentration of 1.0x10 ⁻¹³ M N	t figures, what is the pH of a solution containing a NaOH?				
	a. 1.0 ©7.0	b. 13 d13				
2 (3 points).	What calibration method is ge in sample injection volumes?	enerally used for gas chromatography due to variation				
	a. standard addition b) internal standard	c. external standard d. none of these				
3 (3 points).	Beer's law states that:					
 a. a straight line can describe the relationship between points on a graph. b absorbance is proportional to concentration. c. transmittance is proportional to concentration. d. molar absorptivity is proportional to concentration. 						
4 (3 points).	Report the following with corr	rect significant figures:				
29.0075 ± 0.0226						
Answer: 29.01 ±0.02						
5 (3 points).	Fluorescence almost always o light by the same molecule?	occurs at a higher or lower energy than absorption of				
	a. higher	b) lower				
6 (3 points).	Relative to normal phase HPL that is:	C, reverse phase HPLC utilizes a stationary phase				
	a. polar. b. non-polar.	c. volatile.d. need more information.				

		$pK_a = 7$ for HA?							
		a. 0 b. 1	c. 0.1 d. 10						
8 (2	points).	When choosing a cashould match:	color indicator for	an acid base titratio	n, the pKa	of the indicato	r		
		a. the pK_b of the a c. the pK_a of the a		b. the pH half way to the equivalence point. the pH at the equivalence point.					
What is the dominant form of aspartic acid (a triprotic acid (H_3A^+)) at a pH of 3.900 (pK _{a1} = 1.990, pK _{a2} = 3.900, pK _{a3} = 10.002)? $H_3A^+ = H_2A + H^-$ a HA and H ₂ A are equal c. H ₂ A d. A ² and HA are equal $H_3A^+ = H_2A^- + H^+$ Refer to the titration curve below for questions 10 through 14									
(a HA and H ₂ A are equal	c. H ₂ A		HBB = HA	+H+ pkaz			
		b. HA		d. A ²⁻ and HA ⁻ ar	e equal	HA- = 12.	ent of		
Refe	r to the	titration curve bel	ow for questions	10 through 14.		III < X T	" praz		
Hď	14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00	0.0 2.0	4.0 6.0	8.0 10.0	12.0	14.0			
0 (3				trant added					
		a. titration of a strob. titration of a strob.	ong acid. ong base.	ctitration of a wead. titration of a wead.	ak acid.	www.add.do.			
(-		the titrant was 0.03 original solution be	100M strong acid,	what was the conce	ntration of	f analyte in the			
		a. 1.00M b. 0.100M		c. 0.0100M					

2

7 (3 points). What is the ratio of [A] / [HA] for a buffer solution of HA with a pH of 7 if the

a) 8.5

c. 5.5 d. 2.0

13 (3 points). At the equivalence point in the titration curve above, the pH can be determined by assuming there is:

a. a weak base in solution.

c. a buffer.

b) a weak acid in solution. d. a solution of pure water.

14 (3 points). What is the pH after 2.5mL of titrant have been added to the solution?

a) 9

c. 5

d. cannot be determined

Worked out Problems

It is your responsibility to work out your answers clearly. Unclear, or unreadable work will not be graded. If there is not enough space provided to show your work, continue on the back of the page and clearly mark the problem number. Be sure to show all of your work and report your final answer with the correct number of significant figures and units. A correct answer without work shown will not receive credit, and cannot receive partial credit. Circle or draw a box around your final answer.

Equations that may, or may not, be useful:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
, where $ax^2 + bx + c = 0$

$$pH = pK_a + log \frac{[base]}{[acid]}$$

$$[H^+] = \sqrt{\frac{K_1 K_2 F + K_1 K_w}{K_1 + F}}$$

$$\log \gamma = \frac{-0.51z^2 \sqrt{u}}{1 + (\alpha \sqrt{\mu}/305)}$$

$$\mu = \frac{1}{2} \sum_{i} c_i z_i^2$$

15 (6 points). What is the equilibrium pH of a 0.125M solution of butanoic acid. The pKa of butanoic acid is 4.818.

pH of a 0.125M solution of butanoic acid. The p

$$K_e = 1.57 \times 10^{-5}$$
 $\frac{HA}{10.175} \times 10^{-5}$
 $C = X + X + X$

£ 0.125-x x x

16 (6 points). Accounting for ionic strength, what is the equilibrium pH of a 0.0700M solution of the strong base NaOH that also contains 0.0300M NaNO₃ (NaNO₃ is fully soluble)? See the table below for activity coefficients (to receive full credit, show the correct work and report your answer to 3 significant figures).

Table 8-1 Activity coefficients for aqueous solutions at 25°C

To a second seco	ion size (α, pm)	lonic strength (μ, M)				
lon		0.001	0.005	0.01	0.05	0.1
Charge	= ±1			******		
H	900	0.967	0.933		25002	2547
$(C_6H_5)_2CHCO_2^-, (C_3H_7)_4N^+$	800	0.966	0.931	0.914	0.86	0.83
(O,N),C,H,O, (C,H,),NH+,CH,OC,H,CO;	700	0.965	SET ON PROPERTY.	0.912	0.85	0.82
LI+, C6H5CO2, HOC6H4CO2, CIC6H4CO2, C.H.CH-CO2	Falls of Maria	0.905	0.930	0.909	0.845	0.81
CH2=CHCH2CO2, (CH2)2CHCH2CO3, (CH2CH2) N+ (CH2 NH)	600	0.965	0.929	0.907	0.835	0.80
Cl ₂ CHCO ₂ , Cl ₃ CCO ₇ , (CH ₃ CH ₂), NH ⁺ , (C ₃ H ₂)NH ₃ Na ⁺ , CdCl ⁺ , ClO ₂ , lO ₃ , HCO ₃ , H ₂ PO ₄ , HSO ₃ , H ₂ AsO ₄ ,	500	0.964	0.928	0.904	0.83	0.79
Co(NH ₃) ₄ (NO ₂) ₂ , CH ₃ CO ₂ , CICH ₃ CO ₇ , (CH ₃) ₂ N [‡] ,						
CH ₃ CH ₃) ₂ NH ₂ , H ₂ NCH ₂ CO ₂ H ₃ NCH ₂ CO ₃ H, (CH ₃) ₂ NH ⁺ , CH ₂ CH ₃ NH ₂	450	0.964	0.928	0.902	0.82	0.775
OHT, FT, SCNT, OCNT, HST, CIOT, CIOT, BrOT, IOT, MnOT.	400	0.964	0.927	0.901	0.815	0.77
ICO, H,citrate, CH,NH, (CH,)NH,	350	0.964	0.926	0.900	0.81	0.76
(+, GI , Br , I , CN -, NO ₂ , NO ₃	300	0.964	0.925	0.899	0.805	Participant of the Participant o
Rb+, Cs+, NH ₄ +, TI+, Ag+	250	0.964	0.924	0.898	0.80	0.755

a. Lanthanides are elements 57-71 in the periodic table.

17 (8 points). Ethylenediamine is a diprotic acid with $pK_{a1} = 6.848$, and $pK_{a2} = 9.928$. What is the equilibrium pH of a 0.855M solution of the basic form of this acid?

egoivalence.
$$B + H_2O = BH^+ + OH^ E = \frac{10^{-14}}{10^{-2}} = 8.47 \times 10^{-5}$$
 $E = \frac{10^{-14}}{10^{-2}} = 8.47 \times 10^{-5}$
 $E = \frac{10^{-14}}{10^{-2}} = \frac{10^{$

4

18 (4 points). For the solution described in question 17 (above), what is the concentration of the acid form of ethylenediamine at equilibrium?

BH + H₂0 = BH₂²⁺ + OH - acid form

$$K_{6z} = \frac{10^{-14}}{10^{-6.548}}$$

$$BH^{+} + H_{2}O \rightleftharpoons BH_{2}^{2+} + OH^{-}$$

$$\frac{(OH^{-})(BH_{2}^{2+})}{(BH^{-})} = K_{62} = 7.05 \times 10^{-8}$$

$$\frac{(8.51816^{-3})(BH_{2}^{2+})}{(8.51816^{-3})} = 7.05 \times 10^{-8} M = (BH_{2}^{2+})$$

19 (12 points). Starting with 30.0mL of a solution containing 0.0769M butanoic acid and 0.0524M butanoate, what is the equilibrium pH after adding 50.0mL of 0.100M NaOH? The pK_a for butanoic acid is 4.82.

20 (12 points). Use the systematic method to determine the equilibrium concentration of silver ion (M) when excess (meaning a saturated solution) AgCl_(s) is added to 0.10 M NaBr. The K_{sp} of AgCl_(s) is 1.8 x 10⁻¹⁰, the K_{sp} of AgBr_(s) is 4.9 x 10⁻¹³, and NaBr is fully soluble. (8 points for the set-up, 4 points for the correct silver ion concentration.)

Chemical reactions:

$$NaBr_{(s)} \rightarrow Na^{+}_{(aq)} + Br^{-}_{(aq)}$$

$$AgCl_{(s)} \rightleftarrows Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$$

$$AgBr_{(s)} \rightleftarrows Ag^{+}_{(aq)} + Br^{-}_{(aq)}$$

mass balance: 0.10m = [Not]

equilibrium expressions:

unknowns: (Agt), [Nat], [Br], [Ci]

4 equations
4
4 unknowns

Solve:
$$(A_g^{\dagger}) + 0.10 = (B_f) + (C_f)$$
 $(B_f) = \frac{4.9 \times 10^{-13}}{(A_g^{\dagger})}$, $(C_f) = \frac{1.8 \times 10^{-10}}{(A_g^{\dagger})}$
 $(A_g^{\dagger}) + 0.10 = \frac{4.9 \times 10^{-13}}{(A_g^{\dagger})} + \frac{1.8 \times 10^{-10}}{(A_g^{\dagger})}$
 $(A_g^{\dagger}) = \frac{1.8 \times 10^{-10}}{(A_g^{\dagger})} + \frac{1.8 \times 10^{-10}}{(A_g^{\dagger})}$
 $(A_g^{\dagger})^2 + 0.10(A_g^{\dagger}) = 1.8 \times 10^{-10}$
 $(A_g^{\dagger})^2 + 0.10(A_g^{\dagger}) = 1.8 \times 10^{-10}$

21 (12 points). The acidic form of the common TRIS buffer (TRIS hydrochloride) has a molecular weight of 157.60g/mole, and a pK_a of 8.07. What mass (g) of TRIS hydrochloride and what volume (mL) of 0.150M strong base is necessary to produce 250mL of buffer at pH 7.50 and with a weak base concentration of 0.0050M?