0.1 Continuous Functions on Intervals

Definition 0.1.1. A function $f: A \rightarrow \mathbb{R}$ is said to be bounded on A if there exists a constant $M>0$ such that $|f(x)| \leq M$ for all $x \in A$.

Remark 0.1.2. A function is bounded if the range of the function is a bounded set of \mathbb{R}. A continuous function is not necessarily bounded. For example, $f(x)=1 / x$ with $A=(0, \infty)$. But it is bounded on $[1, \infty)$.

Theorem 0.1.3. Let $I=[a, b]$ be a closed bounded interval, and $f: I \rightarrow \mathbb{R}$ be continuous on I. Then f is bounded on I.

Proof. Suppose that f is not bounded on I. Then for each $n \in \mathbb{N}$, there exists $x_{n} \in I$ such that $\left|f\left(x_{n}\right)\right|>n$. As $x_{n} \in I$, so $\left\{x_{n}\right\}$ is bounded, by Bolzano-Weierstrass Theorem, there exists an accumulation point of $\left\{x_{n}\right\}$, so there exists a subsequence of $\left\{x_{n_{k}}\right\}$ so that $x_{n_{k}} \rightarrow x$. Since $a \leq x_{n_{k}} \leq b$, we also have $a \leq x \leq b$., i.e., $x \in I$. Since f is continuous on I, we must have $f\left(x n_{k}\right) \rightarrow f(x)$. But this is a contradiction since $\mid f\left(x_{n_{k}} \mid>n_{k} \geq k, k \in \mathbb{N}\right.$.

Remark 0.1.4. In the proof, we use the result of earlier homework: if $x_{n} \leq b$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} x_{n} \leq b$. Similarly, if $x_{n} \geq$ a for all n, then $\lim _{n \rightarrow \infty} x_{n} \geq a$.

Suppose that $f: S \rightarrow \mathbb{R}$. Then define the supremum of f on S, denoted $\sup _{S} f$, to be

$$
\sup _{S}=\sup \{f(x): x \in S\}
$$

similarly, the infimum of f on S is defined by

$$
\inf _{S} f=\inf \{f(x): x \in\}
$$

Note that $\sup _{S} f$ could be ∞ and $\inf _{S} f$ could be $-\infty$, depending on the function f and S. For example, $f(x)=x^{2}$ and $S=\mathbb{R}$. Then $\sup _{S} f=+\infty$ and $\inf _{S} f=0$. Now if $S=(0,2)$, then $\sup _{S} f=4$ and $\inf _{S} f=0$. There are no points in $(0,2)$ where f takes 0 and 4 .

Remark 0.1.5. If there is $c \in S$ such that $\sup _{S} f=f(c)$, then f has an absolute maximum on S at c. Similarly for absolute minimum.

Theorem 0.1.6. (Maximau-Minimum Theorem) Let $)=[a, b]$ be a closed ad bounded interval, and $f: I \rightarrow \mathbb{R}$ be continuous on I. Then f has an absolute maximum and minimum, i.e., there exist points $c, d \in I$ such that

$$
f(c)=\sup _{I} f(x) \text { and } f(d)=\inf _{I} f .
$$

Proof. As f is continuous on I, so it is bounded. Hence both $\inf f$ and $\sup f$ exist. Thus, for each $n \in \mathbb{N}$, there is $x_{n} \in I$ such that

$$
\sup _{I} f-\frac{1}{n}<f\left(x_{n}\right) \leq \sup _{I} f .
$$

So we have a sequence $\left\{x_{n}\right\} \subset I$, by Bolzana-Weierstrass, there exists a subsequence $x_{n_{k}} \rightarrow c$, so $f\left(x_{n_{k}}\right) \rightarrow f(c)$. But the limit is unique. Hence $f(c)=\sup _{I} f$. Similarly we can prove that $f(d)=\inf _{I} f$.

Theorem 0.1.7. (Bolzano's Intermediate Value Theorem) Let f be a continuous function on $[a, b]$ such that $f(a) \neq f(b)$. Let y be any real number between $f(a)$ and $f(b)$. Then there is $a c \in(a, b)$ such that $f(c)=y$.

Proof. Without loss of generality, consider $f(a)<y<f(b)$. First define a set

$$
S=\{x \in[a, b]: f(x)<y\} .
$$

Thus, $S \neq \emptyset$ as $a \in S$. It is clear that S is bounded. So $\sup S$ exists, let $c=\sup S$. Now we prove that $f(c)=y$. It is clear that $a \leq c \leq b$.

Suppose that $c=a$. As $a \in S$ and f is continuous at a, so $f(a)<y$ which implies there exists a $\delta>0$ such that $\forall x \in[a, a+\delta) \Longrightarrow f(x)<y$. Each point in this neighborhood is in S. This is a contradiction to $c=\sup S$.

As $c=\sup S$, there exists a sequence $\left\{x_{n}\right\}$ in S such that $x_{n} \rightarrow c$. From $f\left(x_{n}\right)<y \Longrightarrow f(c) \leq y$, as f is continuous at c.

If $f(c)<y$, again by f being continuous at c, there is a neighborhood of $c,(c-\delta, c+\delta)$, such that $f(x)<y$ for all $x \in(c-\delta, c+\delta)$, which is contradiction, as $c=\sup S$.

Example 0.1.8. Consider $f(x)=x^{2}-2$ on $[0,2]$. So $f(0)=-2, f(2)=2$. Let $y=0$. Then from the theorem, there exists $c \in(0,2)$ such that $f(c)=0$, in fact, $c=\sqrt{2}$.

One note about this: if we only consider the set of rationals, then the graph of $x^{2}-2$ would cross the x-axis without meeting it. Another example of the set of real numbers complete (axiom 12).

Corollary 0.1.9. Let f be continuous function on $[a, b]$ and define $m=$ $\inf _{I} f$ and $M=\sup _{I} f$. Then the range of f is the interval $[m, M]$, i.e., $f([a, b])=[m, M]$.

Proof. We know from above, there exists $c, d \in[a, b]$ such that $f(c)=$ $m, f(d)=M$. And any number $y \in(m, M)$, there is $c \in(a, b)$ such that $f(c)=y$. From the definition m, M, f does not have values outside $[m, M]$. So the range equals $[m, M]$.

Theorem 0.1.10. Let I be an interval and let $f: I \mathbb{R}$ be continuous on I. If $\alpha<\beta$ are numbers in I such that $f(\alpha)<0<f(\beta)($ or $f(\alpha)>0>f(\beta))$, then there exists a number $c \in(\alpha, \beta)$ such that $f(c)=0$.

Proof. As f is continuous on I, so f is continuous on $[\alpha, \beta]$. Apply the Intermediate Value Theorem with $y=0$.

Example 0.1.11. Let $f(x)=\frac{1}{x^{2}+1}$.

1. $I_{1}=(-1,1) . f\left(I_{1}\right)=\left(\frac{1}{2}, 1\right]$.
2. $I_{2}=[0, \infty), f\left(I_{2}\right)=(0,1]$.

Lemma 0.1.12. Let $S \subseteq \mathbb{R}$ be a nonempty set with the property if $x, y \in S$ with $x<y$, then $[x, y] \subseteq S$. Then S is an interval.

Theorem 0.1.13. Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. Then $f(I)$ is an interval.

0.2 Uniform Continuity

First recall the definition of f being continuous at x_{0} : $\forall \epsilon>0 \exists \delta>0 \ni \forall x$: $\left|x-x_{0}\right|<\epsilon \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

In general, δ depends on both ϵ and x_{0}, as function changes rapidly at some points and flat at some other points. We start some examples to look into this.

Example 0.2.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x)=2 x$. Let $x_{0} \in \mathbb{R}$. Consider

$$
\left|f(x)-f\left(x_{0}\right)\right|=\left|2 x-2 x_{0}\right|=2\left|x-x_{0}\right| .
$$

From this we can see if we choose $\delta=\epsilon / 2$, we have $\left|x-x_{0}\right|<\delta \Longrightarrow$ $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$. In this case, δ depends only on ϵ, it works for all $x_{0} \in \mathbb{R}$.

Example 0.2.2. Let $f:(0, \infty) \rightarrow \mathbb{R}$ with $f(x)=1 / x$. Let $x_{0}=u>0$. Consider

$$
|f(x)-f(u)|=\frac{|x-u|}{x u}
$$

As $x \rightarrow u$, so consider only $|x-u|<u / 2$, i.e., $u / 2<x<3 u / 2$. Then $1 / x<2 / u$. Hence $1 / u x<(1 / u)(2 / u)=2 / u^{2}$. Now given $\epsilon>0$, choose $\delta=\min \left\{u / 2, u^{2} \epsilon / 2\right\}$. So when $|x-u|<\delta \Longrightarrow|f(x)-f(u)|<\epsilon$.

Here δ depends on both ϵ and u. In fact, there is no δ for all $u>0$, as then $\delta=0$.

See the graph of $f(x)=1 / x$.
Definition 0.2.3. Let $f: D \rightarrow \mathbb{R}$ is uniformly continuous on $E \subset D$ iff $\forall \epsilon>0 \exists \delta>0 \ni \forall x, y \in E,|x-y|, \delta \Longrightarrow|f(x)-f(y)|<\epsilon$. If f is uniformly continuous on D, then f is uniformly continuous.

Remark 0.2.4. f uniformly continuous on E implies f is continuous on E. The converse is not true.

Example 0.2.5. 1. $f:[2.5,3] \rightarrow \mathbb{R}$ defined by $f(x)=\frac{3}{x-2}$.
2. $f:(0,6) \rightarrow \mathbb{R}$ with $f(x)=x^{2}+2 x-5$.
3. $f:(2,3) \rightarrow \mathbb{R}$ with $f(x)=\frac{3}{x-2}$.

Non-uniform Continuity Criteriia Let $A \subseteq \mathbb{R}$ and let $f: A \rightarrow \mathbb{R}$. Then the following statements are equivalent.

1. f is not uniformly continuous on A.
2. $\exists \epsilon_{0}>0$ such that for every $\delta>0$ there are points $x_{\delta}, y_{\delta} \in A$ such that $\left|x_{\delta}-y_{\delta}\right|<\delta$ and $\left|f\left(x_{\delta}\right)-f\left(y_{\delta}\right)\right| \geq \epsilon_{0}$.
3. $\exists \epsilon_{0}>0$ and two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in A such that $\lim \left(x_{n}-y_{n}\right)=$ 0 and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$ for all $n \in \mathbb{N}$.

Example 0.2.6. Let $f:(0, \infty) \rightarrow \mathbb{R}$ with $f(x)=1 / x$. Now pick $\epsilon_{0}=1 / 2$, and choose $x_{n}=1 / n$ and $y_{n}=1 /(n+1)$. Then $\lim \left(x_{n}-y_{n}\right)=0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=1>1 / 2$ for all n.

Theorem 0.2.7. Let I be a closed bounded interval and let $f: I \rightarrow \mathbb{R}$ be continuous on I. Then f is uniformly continuous on I.

Proof. If f is not uniformly continuous on I. From the above, $\exists \epsilon_{0}>0$ and $x_{n}, y_{n} \in I$ such that $x_{n}-y_{n} \rightarrow 0$ and $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$ for all n. As I is bounded, so by Bolzana-Weierstrass, there is a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ that converges to $z \in I$, as I is closed interval. In addition, from

$$
\left|y_{n_{k}}-z\right| \leq\left|y_{n_{k}}-x_{n_{k}}\right|+\left|x_{n_{k}}-z\right|
$$

$y_{n_{k}} \rightarrow z$ as well.
Now as f is continuous at z, so we have $f\left(x_{n_{k}}\right) \rightarrow f(z)$ and $f\left(y_{n_{k}}\right) \rightarrow f(z)$. But this is a contradiction, as $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0}$ for all n.

Lipschitz Functions

Definition 0.2.8. Let $A \subset \mathbb{R}$ and let $f: A \rightarrow \mathbb{R}$. If there exists a constant $K>0$ such that

$$
|f(x)-f(y)| \leq K|x-y|, \forall x, y \in A
$$

then f is said to be a Lipschitz function (or to satisfy a Lipschitz condition) on A.

Geometrically, f is Lipschitz if and only if the slopes of secant line joining points $(x, f(x))$ and $(y, f(y))$ are bounded by K.

Theorem 0.2.9. Let $f: A \rightarrow \mathbb{R}$ is a Lipschitz function, then f is uniformly continuous on A.

Proof. Let $\epsilon>0$, choose $\delta=\epsilon / K$. Then for all $x, y \in A$ with $|x-y|<\delta$, we have $|f(x)-f(y)|<\epsilon$.

Example 0.2.10. Consider $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}$. f is uniformly continuous on $[a, b]$ but not on \mathbb{R}.

Proof. Let $c \in \mathbb{R}$. Consider

$$
|f(x)-f(c)|=\left|x^{2}-c^{2}\right|=|x-c||x+c|
$$

As x is close to c, we assume that $|x-c|<1$. So this implies $|x|<1+|c|$, thus $|x+c| \leq 1+2|c|$. Hence

$$
|x-c||x+c|<|x-c|(1+2|c|) .
$$

Now for $\epsilon>0$, choose $\delta=\min \left\{1, \frac{\epsilon}{1+2|c|}\right\}$ such that for all x satisfying $|x-c|<$ $\delta,|f(x)-f(c)|<\epsilon$, i.e., f is continuous on \mathbb{R}.

As δ depends on both ϵ and c, c is larger and larger, the values of δ is smaller and smaller (as the graph becomes more steeper). There is no such δ that works for all points. In fact, $\inf _{c} \delta=0$.

But when we consider only on $[-a, a]$ for $a>0$. Then

$$
|x+c| \leq|x|+|c| \leq 2 a,
$$

hence $\delta=\epsilon / 2 a$ works for all points on $[-a, a]$, i.e., f is uniformly continuous on $[-a, a]$.

