
0.1 Continuous Functions on Intervals

Definition 0.1.1. A function f : A→ R is said to be bounded on A if there
exists a constant M > 0 such that |f(x)| ≤M for all x ∈ A.

Remark 0.1.2. A function is bounded if the range of the function is a
bounded set of R. A continuous function is not necessarily bounded. For
example, f(x) = 1/x with A = (0,∞). But it is bounded on [1,∞).

Theorem 0.1.3. Let I = [a, b] be a closed bounded interval, and f : I → R
be continuous on I. Then f is bounded on I.

Proof. Suppose that f is not bounded on I. Then for each n ∈ N, there
exists xn ∈ I such that |f(xn)| > n. As xn ∈ I, so {xn} is bounded, by
Bolzano-Weierstrass Theorem, there exists an accumulation point of {xn},
so there exists a subsequence of {xnk

} so that xnk
→ x. Since a ≤ xnk

≤ b,
we also have a ≤ x ≤ b., i.e., x ∈ I. Since f is continuous on I, we must have
f(xnk)→ f(x). But this is a contradiction since |f(xnk

| > nk ≥ k, k ∈ N.

Remark 0.1.4. In the proof, we use the result of earlier homework: if xn ≤ b
for all n ∈ N, then limn→∞ xn ≤ b. Similarly, if xn ≥ a for all n, then
limn→∞ xn ≥ a.

Suppose that f : S → R. Then define the supremum of f on S, denoted
supS f , to be

sup
S

= sup{f(x) : x ∈ S},

similarly, the infimum of f on S is defined by

inf
S
f = inf{f(x) : x ∈}.

Note that supS f could be ∞ and infS f could be −∞, depending on the
function f and S. For example, f(x) = x2 and S = R. Then supS f = +∞
and infS f = 0. Now if S = (0, 2), then supS f = 4 and infS f = 0. There
are no points in (0, 2) where f takes 0 and 4.

Remark 0.1.5. If there is c ∈ S such that supSf = f(c), then f has an
absolute maximum on S at c. Similarly for absolute minimum.
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Theorem 0.1.6. (Maximau-Minimum Theorem) Let ) = [a, b] be a closed ad
bounded interval, and f : I → R be continuous on I. Then f has an absolute
maximum and minimum, i.e., there exist points c, d ∈ I such that

f(c) = sup
I
f(x) and f(d) = inf

I
f.

Proof. As f is continuous on I, so it is bounded. Hence both inf f and sup f
exist. Thus, for each n ∈ N, there is xn ∈ I such that

sup
I
f − 1

n
< f(xn) ≤ sup

I
f.

So we have a sequence {xn} ⊂ I, by Bolzana-Weierstrass, there exists a
subsequence xnk

→ c, so f(xnk
) → f(c). But the limit is unique. Hence

f(c) = supI f . Similarly we can prove that f(d) = infI f .

Theorem 0.1.7. (Bolzano’s Intermediate Value Theorem) Let f be a con-
tinuous function on [a, b] such that f(a) 6= f(b). Let y be any real number
between f(a) and f(b) . Then there is a c ∈ (a, b) such that f(c) = y.

Proof. Without loss of generality, consider f(a) < y < f(b). First define a
set

S = {x ∈ [a, b] : f(x) < y}.
Thus, S 6= ∅ as a ∈ S. It is clear that S is bounded. So supS exists, let
c = supS. Now we prove that f(c) = y. It is clear that a ≤ c ≤ b.

Suppose that c = a. As a ∈ S and f is continuous at a, so f(a) < y which
implies there exists a δ > 0 such that ∀x ∈ [a, a + δ) =⇒ f(x) < y. Each
point in this neighborhood is in S. This is a contradiction to c = supS.

As c = supS, there exists a sequence {xn} in S such that xn → c. From
f(xn) < y =⇒ f(c) ≤ y, as f is continuous at c.

If f(c) < y, again by f being continuous at c, there is a neighborhood
of c, (c − δ, c + δ), such that f(x) < y for all x ∈ (c − δ, c + δ), which is
contradiction, as c = supS.

Example 0.1.8. Consider f(x) = x2 − 2 on [0, 2]. So f(0) = −2, f(2) = 2.
Let y = 0. Then from the theorem, there exists c ∈ (0, 2) such that f(c) = 0,
in fact, c =

√
2.

One note about this: if we only consider the set of rationals, then the
graph of x2 − 2 would cross the x-axis without meeting it. Another example
of the set of real numbers complete (axiom 12).
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Corollary 0.1.9. Let f be continuous function on [a, b] and define m =
infI f and M = supI f . Then the range of f is the interval [m,M ], i.e.,
f([a, b]) = [m,M ].

Proof. We know from above, there exists c, d ∈ [a, b] such that f(c) =
m, f(d) = M . And any number y ∈ (m,M), there is c ∈ (a, b) such that
f(c) = y. From the definition m,M , f does not have values outside [m,M ].
So the range equals [m,M ].

Theorem 0.1.10. Let I be an interval and let f : IR be continuous on I. If
α < β are numbers in I such that f(α) < 0 < f(β) (or f(α) > 0 > f(β)),
then there exists a number c ∈ (α, β) such that f(c) = 0.

Proof. As f is continuous on I, so f is continuous on [α, β]. Apply the
Intermediate Value Theorem with y = 0.

Example 0.1.11. Let f(x) = 1
x2+1

.

1. I1 = (−1, 1). f(I1) = (1
2
, 1].

2. I2 = [0,∞), f(I2) = (0, 1].

Lemma 0.1.12. Let S ⊆ R be a nonempty set with the property if x, y ∈ S
with x < y, then [x, y] ⊆ S. Then S is an interval.

Theorem 0.1.13. Let I be an interval and let f : I → R be continuous on
I. Then f(I) is an interval.

0.2 Uniform Continuity

First recall the definition of f being continuous at x0: ∀ε > 0∃δ > 0 3 ∀x :
|x− x0| < ε =⇒ |f(x)− f(x0)| < ε.

In general, δ depends on both ε and x0, as function changes rapidly at
some points and flat at some other points. We start some examples to look
into this.

Example 0.2.1. Let f : R→ R and f(x) = 2x. Let x0 ∈ R. Consider

|f(x)− f(x0)| = |2x− 2x0| = 2|x− x0|.

From this we can see if we choose δ = ε/2, we have |x − x0| < δ =⇒
|f(x)− f(x0)| < ε. In this case, δ depends only on ε, it works for all x0 ∈ R.

3



Example 0.2.2. Let f : (0,∞) → R with f(x) = 1/x. Let x0 = u > 0.
Consider

|f(x)− f(u)| = |x− u|
xu

.

As x → u, so consider only |x − u| < u/2, i.e., u/2 < x < 3u/2. Then
1/x < 2/u. Hence 1/ux < (1/u)(2/u) = 2/u2. Now given ε > 0, choose
δ = min{u/2, u2ε/2}. So when |x− u| < δ =⇒ |f(x)− f(u)| < ε.

Here δ depends on both ε and u. In fact, there is no δ for all u > 0, as
then δ = 0.

See the graph of f(x) = 1/x.

Definition 0.2.3. Let f : D → R is uniformly continuous on E ⊂ D iff
∀ε > 0∃δ > 0 3 ∀x, y ∈ E, |x− y|, δ =⇒ |f(x)− f(y)| < ε. If f is uniformly
continuous on D, then f is uniformly continuous.

Remark 0.2.4. f uniformly continuous on E implies f is continuous on E.
The converse is not true.

Example 0.2.5. 1. f : [2.5, 3]→ R defined by f(x) = 3
x−2

.

2. f : (0, 6)→ R with f(x) = x2 + 2x− 5.

3. f : (2, 3)→ R with f(x) = 3
x−2

.

Non-uniform Continuity Criteriia Let A ⊆ R and let f : A→ R. Then
the following statements are equivalent.

1. f is not uniformly continuous on A.

2. ∃ε0 > 0 such that for every δ > 0 there are points xδ, yδ ∈ A such that
|xδ − yδ| < δ and |f(xδ)− f(yδ)| ≥ ε0.

3. ∃ε0 > 0 and two sequences {xn} and {yn} in A such that lim(xn−yn) =
0 and |f(xn)− f(yn)| ≥ ε0 for all n ∈ N.

Example 0.2.6. Let f : (0,∞) → R with f(x) = 1/x. Now pick ε0 = 1/2,
and choose xn = 1/n and yn = 1/(n + 1). Then lim(xn − yn) = 0 and
|f(xn)− f(yn)| = 1 > 1/2 for all n.

Theorem 0.2.7. Let I be a closed bounded interval and let f : I → R be
continuous on I. Then f is uniformly continuous on I.
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Proof. If f is not uniformly continuous on I. From the above, ∃ε0 > 0 and
xn, yn ∈ I such that xn − yn → 0 and |f(xn) − f(yn)| ≥ ε0 for all n. As I
is bounded, so by Bolzana-Weierstrass, there is a subsequence {xnk

} of {xn}
that converges to z ∈ I, as I is closed interval. In addition, from

|ynk
− z| ≤ |ynk

− xnk
|+ |xnk

− z|

ynk
→ z as well.
Now as f is continuous at z, so we have f(xnk

)→ f(z) and f(ynk
)→ f(z).

But this is a contradiction, as |f(xn)− f(yn)| ≥ ε0 for all n.

Lipschitz Functions

Definition 0.2.8. Let A ⊂ R and let f : A → R. If there exists a constant
K > 0 such that

|f(x)− f(y)| ≤ K|x− y|, ∀x, y ∈ A,

then f is said to be a Lipschitz function (or to satisfy a Lipschitz condition)
on A.

Geometrically, f is Lipschitz if and only if the slopes of secant line joining
points (x, f(x)) and (y, f(y)) are bounded by K.

Theorem 0.2.9. Let f : A→ R is a Lipschitz function, then f is uniformly
continuous on A.

Proof. Let ε > 0, choose δ = ε/K. Then for all x, y ∈ A with |x− y| < δ, we
have |f(x)− f(y)| < ε.

Example 0.2.10. Consider f : R→ R, f(x) = x2. f is uniformly continu-
ous on [a, b] but not on R.

Proof. Let c ∈ R. Consider

|f(x)− f(c)| = |x2 − c2| = |x− c||x+ c|.

As x is close to c, we assume that |x − c| < 1. So this implies |x| < 1 + |c|,
thus |x+ c| ≤ 1 + 2|c|. Hence

|x− c||x+ c| < |x− c|(1 + 2|c|).
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Now for ε > 0, choose δ = min{1, ε
1+2|c|} such that for all x satisfying |x−c| <

δ, |f(x)− f(c)| < ε, i.e., f is continuous on R.
As δ depends on both ε and c, c is larger and larger, the values of δ is

smaller and smaller (as the graph becomes more steeper). There is no such
δ that works for all points. In fact, infc δ = 0.

But when we consider only on [−a, a] for a > 0. Then

|x+ c| ≤ |x|+ |c| ≤ 2a,

hence δ = ε/2a works for all points on [−a, a], i.e., f is uniformly continuous
on [−a, a].
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