0.1 Continuous Functions on Intervals

Definition 0.1.1. A function f : A — R is said to be bounded on A if there
exists a constant M > 0 such that |f(x)| < M for all x € A.

Remark 0.1.2. A function is bounded if the range of the function is a
bounded set of R. A continuous function is not necessarily bounded. For
example, f(x) = 1/x with A = (0,00). But it is bounded on [1,00).

Theorem 0.1.3. Let I = [a,b] be a closed bounded interval, and f : I — R
be continuous on I. Then f is bounded on I.

Proof. Suppose that f is not bounded on I. Then for each n € N, there
exists x, € [ such that |f(x,)] > n. As z, € I, so {z,} is bounded, by
Bolzano-Weierstrass Theorem, there exists an accumulation point of {x,},
so there exists a subsequence of {z,, } so that x,, — z. Since a < z,,, <,
we also have a < x < b., i.e., x € I. Since f is continuous on I, we must have
f(zng) — f(x). But thisis a contradiction since | f(z,, | > np > k, k€ N. O

Remark 0.1.4. In the proof, we use the result of earlier homework: if x, < b
for all n € N, then lim, . x, < b. Similarly, if x, > a for all n, then
lim,, o0 Tp, = a.

Suppose that f : S — R. Then define the supremum of f on S, denoted
supg f, to be
sup = sup{ f(x) : v € S},
S

similarly, the infimum of f on S is defined by
irslff = inf{f(x):x €}.

Note that supg f could be co and infg f could be —o0o, depending on the
function f and S. For example, f(z) = 2? and S = R. Then supg f = +00
and infg f = 0. Now if S = (0,2), then supg f = 4 and infg f = 0. There
are no points in (0,2) where f takes 0 and 4.

Remark 0.1.5. If there is ¢ € S such that supsf = f(c), then f has an
absolute mazximum on S at c. Similarly for absolute minimum.



Theorem 0.1.6. (Mazimau-Minimum Theorem) Let ) = [a,b] be a closed ad
bounded interval, and f : I — R be continuous on I. Then f has an absolute
mazximum and minimum, i.e., there exist points c¢,d € I such that

£(e) = sup f(x) and f(d) = inf f.

Proof. As f is continuous on I, so it is bounded. Hence both inf f and sup f
exist. Thus, for each n € N, there is z,, € I such that

sup f — 1o f(z,) <sup f.
I n I

So we have a sequence {x,} C I, by Bolzana-Weierstrass, there exists a
subsequence x,, — ¢, so f(z,,) — f(c). But the limit is unique. Hence
f(c) =sup; f. Similarly we can prove that f(d) = inf; f. ]

Theorem 0.1.7. (Bolzano’s Intermediate Value Theorem) Let f be a con-
tinuous function on [a,b] such that f(a) # f(b). Let y be any real number
between f(a) and f(b) . Then there is a ¢ € (a,b) such that f(c) =y.

Proof. Without loss of generality, consider f(a) < y < f(b). First define a
set

S={z€la,b]: f(z) <y}
Thus, S # () as a € S. It is clear that S is bounded. So sup S exists, let
¢ =supS. Now we prove that f(c) = y. It is clear that a < ¢ <b.

Suppose that ¢ = a. As a € S and f is continuous at a, so f(a) < y which
implies there exists a § > 0 such that Vz € [a,a + ) = f(z) < y. Each
point in this neighborhood is in S. This is a contradiction to ¢ = sup S.

As ¢ = sup S, there exists a sequence {x,} in S such that =, — ¢. From
flz,) <y = f(c) <y, as f is continuous at c.

If f(¢) <y, again by f being continuous at ¢, there is a neighborhood
of ¢, (¢ = d,¢ +9), such that f(z) < y for all z € (¢ — d,¢ + ), which is
contradiction, as ¢ = sup S. O

Example 0.1.8. Consider f(z) = 2* —2 on [0,2]. So f(0) = =2, f(2) = 2.
Let y = 0. Then from the theorem, there exists ¢ € (0,2) such that f(c) =0,
in fact, c = V2.

One note about this: if we only consider the set of rationals, then the
graph of * — 2 would cross the x-axis without meeting it. Another ezample
of the set of real numbers complete (axiom 12).
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Corollary 0.1.9. Let f be continuous function on [a,b] and define m =
inf; f and M = sup; f. Then the range of f is the interval [m,M], i.e.,
f(la, b)) = [m, M].

Proof. We know from above, there exists ¢,d € [a,b] such that f(c) =
m, f(d) = M. And any number y € (m, M), there is ¢ € (a,b) such that
f(¢) = y. From the definition m, M, f does not have values outside [m, M].
So the range equals [m, M]. O

Theorem 0.1.10. Let I be an interval and let f : IR be continuous on I. If
a < (B are numbers in I such that f(a) < 0 < f(B) (or f(a) > 0> f(B)),
then there exists a number ¢ € (o, 3) such that f(c) = 0.

Proof. As f is continuous on I, so f is continuous on [o, 3]. Apply the

Intermediate Value Theorem with y = 0. O
1
Example 0.1.11. Let f(z) = 75

1. L =(-11). f(L,)=(5,1].
2. I, =[0,00), f(I) = (0,1].

Lemma 0.1.12. Let S C R be a nonempty set with the property if x,y € S
with x <y, then [z,y] CS. Then S is an interval.

Theorem 0.1.13. Let I be an interval and let f : I — R be continuous on
I. Then f(I) is an interval.

0.2 Uniform Continuity

First recall the definition of f being continuous at zy: Ve > 036 > 0 > Vx :
|z — o] <€ = [f(z) — flzo)] <e

In general, § depends on both e and xy, as function changes rapidly at
some points and flat at some other points. We start some examples to look
into this.

Example 0.2.1. Let f : R — R and f(x) = 2x. Let xqg € R. Consider
|f(@) = flzo)| = 22 = 20| = 2]z — wol.

From this we can see if we choose § = €/2, we have |v — x9] < § =
|f(x)— f(zo)| < €. In this case, § depends only on €, it works for all o € R.
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Example 0.2.2. Let f : (0,00) — R with f(z) = 1/x. Let xy = u > 0.

Consider
B |z — ul

|[f(x) = f(u)]
As © — u, so consider only |x — u| < u/2, i.e., u/2 < x < 3u/2. Then
1/x < 2/u. Hence 1/ur < (1/u)(2/u) = 2/u*. Now given € > 0, choose
§ = min{u/2,u%¢/2}. So when |z —u| <§ = |f(z) — f(u)| <e.
Here & depends on both € and u. In fact, there is no ¢ for all u > 0, as
then 6 = 0.
See the graph of f(x) =1/x.

ru

Definition 0.2.3. Let f : D — R s uniformly continuous on E C D iff
Ve>030 >03Va,y € E |lr—y|l,0 = |f(z)— f(y)| <e. If f is uniformly
continuous on D, then f is uniformly continuous.

Remark 0.2.4. f uniformly continuous on E implies [ is continuous on F.
The converse is not true.

Example 0.2.5. 1. f:[2.5,3] — R defined by f(z) = -5

r—2"

2. [:(0,6) — R with f(z) = 2*+ 2z — 5.
3. f:(2,3) = R with f(z) = -25.

r—2

Non-uniform Continuity Criteriia Let A C R and let f : A — R. Then
the following statements are equivalent.

1. f is not uniformly continuous on A.

2. Jdeg > 0 such that for every d > 0 there are points xs,ys € A such that
|25 — ys| <& and [f(zs5) — f(ys)| = €o.

3. Jdep > 0 and two sequences {z, } and {y,} in A such that lim(z, —y,) =
0 and |f(zn) — f(yn)| > € for all n € N.

Example 0.2.6. Let f : (0,00) — R with f(z) = 1/x. Now pick ¢y = 1/2,
and choose x, = 1/n and y, = 1/(n + 1). Then lim(z, — y,) = 0 and
() = Flyn)l =1 > 1/2 for ali n.

Theorem 0.2.7. Let I be a closed bounded interval and let f : I — R be
continuous on I. Then f is uniformly continuous on I.



Proof. 1t f is not uniformly continuous on I. From the above, d¢; > 0 and
T, Yn € I such that x, —y, — 0 and |f(x,) — f(yn)| > € for all n. As I
is bounded, so by Bolzana-Weierstrass, there is a subsequence {x,, } of {z,}
that converges to z € I, as [ is closed interval. In addition, from

|y”k _Z’ < |ynk _‘Tnk| + |'Ink _’Z|

Yn,, — 2 as well.
Now as f is continuous at z, so we have f(z,,) — f(z) and f(yn,) — f(2).
But this is a contradiction, as |f(x,) — f(yn)| > €o for all n. O

Lipschitz Functions

Definition 0.2.8. Let A C R and let f : A — R. If there exists a constant
K > 0 such that

[f(x) = f(y)| < K|z =y, Yo,y € A,

then f is said to be a Lipschitz function (or to satisfy a Lipschitz condition)
on A.

Geometrically, f is Lipschitz if and only if the slopes of secant line joining
points (z, f(z)) and (y, f(y)) are bounded by K.

Theorem 0.2.9. Let f : A — R is a Lipschitz function, then f is uniformly
continuous on A.

Proof. Let € > 0, choose § = ¢/K. Then for all z,y € A with |x —y| < 4, we
have [f(z) — f(y)| <e O

Example 0.2.10. Consider f : R — R, f(z) = 22. f is uniformly continu-
ous on [a,b] but not on R.

Proof. Let ¢ € R. Consider
[f(z) = f(o)] = [a* = ¢ = |z — ]|z + ¢|.

As x is close to ¢, we assume that |x — ¢| < 1. So this implies |z| < 1+ |¢],
thus |z + ¢| < 1+ 2|c|. Hence

|z —c||lz+ | < |z —c|(1+2|c|).
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Now for € > 0, choose § = min{1, ﬁ%cl} such that for all z satisfying |x —c¢| <
3, |f(z) — f(e)| <e, ie., fis continuous on R.

As 0 depends on both € and ¢, ¢ is larger and larger, the values of § is
smaller and smaller (as the graph becomes more steeper). There is no such
0 that works for all points. In fact, inf.d = 0.

But when we consider only on [—a, a] for a > 0. Then

|+ cf < |z| + [e] < 2a,
hence § = €/2a works for all points on [—a, al, i.e., f is uniformly continuous

on [—a,al.

]



