Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Oracle8 SQL Reference ﬂ
Release 8.0 e Q‘ %

A58225-01 Library Product Contents Index

=< >

3
Operators, Functions, Expressions, Conditions

This chapter describes methods of manipulating individual data items. Standard arithmetic operators such as addition
and subtraction are discussed, as well as less common functions such as absolute value and string length. Topics
include:

Operators
SQL Functions

User Functions
Format Models

Expressions
Conditions

Note:

Functions, expressions, and descriptions preceded by =a are available only if the Oracle
objects option isinstalled on your database server.

Operators

An operator manipulatesindividual dataitems and returns aresult. The dataitems are called operands or arguments.
Operators are represented by special characters or by keywords. For example, the multiplication operator is
represented by an asterisk (*) and the operator that tests for nulls is represented by the keywords ISNULL. Tablesin
this section list SQL operators.

Unary and Binary Operators

There are two general classes of operators:

unary A unary operator operates on only one operand. A unary operator typically appears with its operand in this
format:

oper at or operand
binary A binary operator operates on two operands. A binary operator appears with its operandsin this format:

operandl operator operand2

Other operators with special formats accept more than two operands. |f an operator is given anull operand, the result

1 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

isaways null. The only operator that does not follow thisrule is concatenation (||).

Precedence

Precedence isthe order in which Oracle evaluates different operators in the same expression. When evaluating an
expression containing multiple operators, Oracle evaluates operators with higher precedence before evaluating those

with lower precedence. Oracle evaluates operators with equal precedence from left to right within an expression.

Table 3-1 lists the levels of precedence among SQL operators from high to low. Operators listed on the sameline
have the same precedence.

Table 3-1 SQL Operator Precedence

Operator Operation

+, - identity, negation

* | multiplication, division

+ - addition, subtraction, concatenation
=, 1=, <, >, <=, >=, ISNULL, LIKE, BETWEEN, IN comparison

NOT exponentiation, logical negation
AND conjunction

OR disunction

Example

In the following expression multiplication has a higher precedence than addition, so Oracle first multiplies 2 by 3 and
then adds the result to 1.

1+2*3
Y ou can use parentheses in an expression to override operator precedence. Oracle evaluates expressions inside

parentheses before evaluating those outside.

SQL also supports set operators (UNION, UNION ALL, INTERSECT, and MINUS), which combine sets of rows
returned by queries, rather than individual dataitems. All set operators have equal precedence.

Arithmetic Operators
Y ou can use an arithmetic operator in an expression to negate, add, subtract, multiply, and divide numeric values. The

result of the operation isaso a numeric value. Some of these operators are also used in date arithmetic. Table 3-2 lists
arithmetic operators.

Table 3-2 Arithmetic Operators

2of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Operator |Purpose Example
+- Denotes a positive or negative expression. These are unary SELECT * FROM orders
0 WHERE qtysold = -1;
perators.
SELECT * FROM enp
WHERE -sal < O;
* | Multiplies, divides. These are binary operators. UPDATE enp
SET sal = sal * 1.1;
+- Adds, subtracts. These are binary operators. SELECT sal + comm FROM enp
WHERE SYSDATE - hiredate
> 365;

Do not use two consecutive minus signs with no separation (--) in arithmetic expressions to indicate double negation
or the subtraction of a negative value. The characters -- are used to begin comments within SQL statements. You
should separate consecutive minus signs with a space or a parenthesis. For more information on comments within
SQL statements, see "Comments'.

Concatenation Operator

The concatenation operator manipulates character strings. Table 3-3 describes the concatenation operator.

Table 3-3 Concatenation Operator

Operator Purpose Example
I Concatenates character strings. SELECT 'Nane is ' || ename
FROM enp;

Theresult of concatenating two character strings is another character string. If both character strings are of datatype
CHAR, the result has datatype CHAR and is limited to 2000 characters. If either string is of datatype VARCHAR?2,
the result has datatype VARCHARZ and is limited to 4000 characters. Trailing blanksin character strings are
preserved by concatenation, regardless of the strings' datatypes. For more information on the differences between the
CHAR and VARCHAR?Z datatypes, see "Character Datatypes’.

On most platforms, the concatenation operator istwo solid vertical bars, as shown in Table 3-3. However, some IBM
platforms use broken vertical bars for this operator. When moving SQL script files between systems having different
character sets, such as between ASCI| and EBCDIC, vertical bars might not be trand ated into the vertical bar
required by the target Oracle environment. Oracle provides the CONCAT character function as an aternative to the
vertical bar operator for caseswhen it is difficult or impossible to control trandation performed by operating system
or network utilities. Use this function in applications that will be moved between environments with differing
character sets.

Although Oracle treats zero-length character strings as nulls, concatenating a zero-length character string with another
operand always results in the other operand, so null can result only from the concatenation of two null strings.
However, this may not continue to be true in future versions of Oracle. To concatenate an expression that might be
null, use the NVL function to explicitly convert the expression to a zero-length string.

30of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Example

This exampl e creates a table with both CHAR and VARCHAR2 columns, inserts values both with and without
trailing blanks, and then selects these values, concatenating them. Note that for both CHAR and VARCHAR2
columns, the trailing blanks are preserved.

CREATE TABLE tabl (col 1 VARCHAR2(6), col2 CHAR(6),
col 3 VARCHAR2(6), col4 CHAR(6));

Tabl e creat ed.

| NSERT | NTO tabl (coll, col?2, col 3, col 4)
VALUES ('abc', 'def ", 'ghi ikl

1 row created.

SELECT col 1] | col 2| | col 3] | col 4 "Concat enati on"
FROM t ab1;

Concat enati on

abcdef ghi j ki

Comparison Operators

Comparison operators compare one expression with another. The result of such a comparison can be TRUE, FALSE,
or UNKNOWN. For information on conditions, see "Conditions'. Table 3-4 lists comparison operators.

Table 3-4 Comparison Operators

Operator |Purpose Example
= Equality test. SELECT *
FROM emp
WHERE sal = 1500;
}\: Inequality test. Some forms of the inequality operator may be SE:EECT *
- unavailable on some platforms. V\HRGERVIE ool 1= 1500:
> "Greater than" and "less than" tests. SELECT * FROM enp
WHERE sal > 1500;
< SELECT * FROM enp
WHERE sal < 1500;
>= "Greater than or equal to" and "less than or equal to" tests. SELECT * FROM enp
WHERE sal >= 1500;
<= SELECT * FROM enp
WHERE sal <= 1500;
I'N "Equal to any member of" test. Equivalent to "= ANY". SELECT * FROM enp
VHERE job IN

4 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

5 of 86

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

(' CLERK' , ' ANALYST');
SELECT * FROM enmp
WHERE sal IN
(SELECT sal FROM enp
WHERE deptno = 30);
NOT IN |Equivalentto"!=ALL". Evaluatesto FALSE if any member of the |SELECT * FROM enp
satisNULL. VWHERE sal NOT I N
(SELECT sal FROM enp
WHERE deptno = 30);
SELECT * FROM enp
WHERE j ob NOT IN
(' CLERK' , ANALYST');
élellYVE Compares avalueto each valuein alist or returned by a query. SE\%\E(E:;E* FlRGW 2&3
eced == > < <= >= sal =
Must be preceded by =, 1=, >, <, <=, (SELECT sal FROM enp
_ WHERE deptno = 30);
Evaluatesto FALSE if the query returns no rows.
ALL Compares avalueto every valuein alist or returned by aquery. SE\%\E(E:;E* FlRGVl enp
eced == > < <= >= sal >=
Must be preceded by =, 1=, >, <, <=, ALL (1400, 3000):
Evaluatesto TRUE if the query returns no rows.
[NOT] [Not] greater than or equal to x and lessthan or equal to y. SELECT * FROM enp
BETWEEN VWHERE sal
X AND vy BETWEEN 2000 AND 3000;
EXI STS | TRUE if asubquery returns at least one row. SELECT enane, deptno
FROM dept
VWHERE EXI STS
(SELECT * FROM enp
WHERE dept . dept no
= enp. dept no) ;
X [NOT] | TRUE if x does[not] match the patterny. Withiny, the character | See"LIKE Operator".
LIKE'Y |"o4" matches any string of zero or more characters except null. The
character "_" matches any single character. Any character, excepting | SELECT * FROM t abl
ESCAPE - o
[E percent (%) and underbar () may follow ESCAPE; awildcard WHERE col 1 LIKE
z'] . L A _Cl YE% ESCAPE '/ ;
character istreated as aliteral if preceded by the character - ’
designated as the escape character.
EEOT] Testsfor nulls. Thisisthe only operator that you should use to test SE:EECT ename, deptno
n 1 IerI errp
NULL for nulls. See "Nulls". VWHERE comm IS NULL;

Additional information on the NOT IN and LIKE operators appearsin the sections that follow.

NOT IN Operator

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

6 of 86

If any item in the list following aNOT IN operation isnull, all rows evaluate to UNKNOWN (and no rows are
returned). For example, the following statement returns the string 'TRUE' for each row:

SELECT ' TRUE'
FROM emp
WHERE deptno NOT IN (5, 15);
However, the following statement returns no rows:
SELECT ' TRUE'
FROM emp
WHERE deptno NOT IN (5,15, null);
The above example returns no rows because the WHERE clause condition eval uates to:
deptno !'= 5 AND deptno != 15 AND deptno != null

Because all conditions that compare a null result in anull, the entire expression resultsin anull. This behavior can
easily be overlooked, especialy when the NOT IN operator references a subquery.

LIKE Operator

The LIKE operator is used in character string comparisons with pattern matching. The syntax for a condition using
the LIKE operator is shown in this diagram:

[7eT] B 0CEDe
@H chal

where:

charl isavaueto be compared with a pattern. This value can have datatype CHAR or VARCHAR2.

NOT logically inverts the result of the condition, returning FALSE if the condition evaluatesto TRUE and
TRUE if it evaluatesto FAL SE.

char2 isthe pattern to which charl is compared. The pattern isavalue of datatype CHAR or VARCHAR2
and can contain the special pattern matching characters % and _.

ESCAPE identifies asingle character as the escape character. The escape character can be used to cause Oracle to
interpret % or _ literally, rather than as a special character, in the pattern.

If you wish to search for strings containing an escape character, you must specify this character twice.
For example, if the escape character is'/', to search for the string 'client/server', you must specify,
‘client//server'.

While the equal (=) operator exactly matches one character value to another, the LIKE operator matches a portion of
one character value to another by searching the first value for the pattern specified by the second. Note that blank
padding is not used for LIKE comparisons.

With the LIKE operator, you can compare avalue to a pattern rather than to a constant. The pattern can only appear
after the LIKE keyword. For example, you can issue the following query to find the salaries of all employeeswith
names beginning with 'SM":

SELECT sal
FROM emp

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

7 of 86

VWHERE enane LIKE ' SM% ;
The following query uses the = operator, rather than the LIKE operator, to find the salaries of all employees with the
name 'SM%:'"
SELECT sal

FROM emp
VWHERE enane = ' SM¥% ;

The following query finds the salaries of al employees with the name 'SM%'. Oracleinterprets 'SM%' as atext literal,
rather than as a pattern, because it precedes the LIKE operator:

SELECT sal
FROM emp
VHERE ' SM¥% LI KE enane;

Patterns usually use special charactersthat Oracle matches with different charactersin the value:

¢ Anunderscore () in the pattern matches exactly one character (as opposed to one byte in a multibyte character
sat) in the value.

e A percent sign (%) in the pattern can match zero or more characters (as opposed to bytesin a multibyte
character set) in the value. Note that the pattern '%' cannot match anull.

Case Sensitivity and Pattern Matching

Caseisdgnificant in all conditions comparing character expressionsincluding the LIKE and equality (=) operators.
Y ou can use the UPPER() function to perform a case-insensitive match, asin this condition:

UPPER(enane) LIKE ' SM®%

Pattern Matching on Indexed Columns

When LIKE is used to search an indexed column for a pattern, Oracle can use the index to improve the statement's
performance if the leading character in the patternisnot "%" or *_". In this case, Oracle can scan the index by this
leading character. If thefirst character in the pattern is"%" or " ", the index cannot improve the query's performance
because Oracle cannot scan the index.

Example 1

This conditionistrue for all ENAME values beginning with "MA":

enane LI KE ' MA%

All of these ENAME values make the condition TRUE:

MARTI N, MA, MARK, MARY

Caseissignificant, so ENAME values beginning with "Ma," "ma," and "mA" make the condition FALSE.

Example 2
Consider this condition:

enanme LIKE ' SM TH_'

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

This condition istrue for these ENAME values:

SM THE, SM THY, SM THS

This conditionisfalsefor 'SMITH', since the specia character " " must match exactly one character of the ENAME
value.

ESCAPE Option

Y ou can include the actual characters"%" or "_" in the pattern by using the ESCAPE option. The ESCAPE option
identifies the escape character. If the escape character appears in the pattern before the character "%" or " " then
Oracle interprets this character literally in the pattern, rather than as a special pattern matching character.

Example:
To search for any employees with the pattern 'A_B' in their name:

SELECT ename
FROM emp
WHERE ename LIKE ' %A\ _B% ESCAPE '\';

The ESCAPE option identifies the backdash (\) as the escape character. In the pattern, the escape character precedes
the underscore (). This causes Oracle to interpret the underscore literally, rather than as a special pattern matching
character.

Patterns Without %

If apattern does not contain the "%" character, the condition can be TRUE only if both operands have the same
length.

Example:
Consider the definition of this table and the values inserted into it;

CREATE TABLE freds (f CHAR(6), v VARCHAR2(6)):
I NSERT | NTO freds VALUES (' FRED , ' FRED);

Because Oracle blank-pads CHAR values, the value of F is blank-padded to 6 bytes. V is not blank-padded and has
length 4.

Logical Operators

A logical operator combines the results of two component conditions to produce a single result based on them or to
invert the result of asingle condition. Table 3-5 listslogical operators.

Table 3-5 Logical Operators

8 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Operator |Function Example
NOT Returns TRUE if the following condition is FALSE. Returns SEIE%T\A *
- - . - . . - errp
lI:JAI\IIkS,\IE(;{/\lltl\;sTRUE. If itisUNKNOWN, it remains VHERE NOT (job 1S NULL):
: SELECT *
FROM emp
VWHERE NOT
(sal BETWEEN 1000 AND 2000);
AND Returns TRUE if both component conditions are TRUE. SEIE%T\A *
e ; enp
Sﬁ?(rﬂsb I;,VAkISE if either isFALSE. Otherwise returns VHERE j ob = ' CLERK
) AND deptno = 10;
OR Returns TRUE if either component condition is TRUE. SELECT *
Returns FALSE if both are FAL SE. Otherwise returns FROM enp , ,
UNKNOWN WHERE job = ERK'
: OR deptno = 10;

For example, in the WHERE clause of the following SELECT statement, the AND logical operator is used to ensure
that only those hired before 1984 and earning more than $1000 a month are returned:

SELECT *
FROM emp
WHERE hiredate < TO DATE(' 01- JAN-1984', ' DD MON- YYYY')
AND sal > 1000;

NOT Operator

Table 3-6 shows the result of applying the NOT operator to a condition.

Table 3-6 NOT Truth Table

NOT TRUE FALSE UNKNOWN
FALSE TRUE UNKNOWN

AND Operator

Table 3-7 shows the results of combining two expressions with AND.

Table 3-7 AND Truth Table

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

9 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

OR Operator

Table 3-8 shows the results of combining two expressions with OR.

Table 3-8 OR Truth Table

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

Set Operators

Set operators combine the results of two component queriesinto a single result. Queries containing set operators are
called compound queries. Table 3-9 lists SQL set operators.

Table 3-9 Set Operators

Operator Returns

UNION All rows selected by either query.

UNION ALL All rows selected by either query, including al duplicates.
INTERSECT All distinct rows selected by both queries.

MINUS All distinct rows selected by the first query but not the second.

All set operators have equal precedence. If a SQL statement contains multiple set operators, Oracle eval uates them
from the left to right if no parentheses explicitly specify another order. To comply with emerging SQL standards, a
future release of Oracle will give the INTERSECT operator greater precedence than the other set operators. Therefore,
you should use parentheses to specify order of evaluation in queries that use the INTERSECT operator with other set
operators.

The corresponding expressions in the select lists of the component queries of a compound query must match in
number and datatype. If component queries select character data, the datatype of the return values are determined as
follows:

¢ |f both queries select values of datatype CHAR, the returned values have datatype CHAR.
e |f either or both of the queries select values of datatype VARCHAR?2, the returned values have datatype
VARCHAR2.

Examples
Consider these two queries and their results:

SELECT part
FROM orders_list1;

SPARKPLUG
FUEL PUWP
FUEL PUWP
TAI LPI PE

10 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

11 of 86

SELECT part
FROM or

CRANKSHAFT
TAI LPI PE
TAI LPI PE

ders_list2;

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

The following examples combine the two query results with each of the set operators.

UNION Example

The following statement combines the results with the UNION operator, which eliminates duplicate selected rows.
This statement shows how datatype must match when columns do not exist in one or the other table:

SELECT part
FROM or

UNI ON

SELECT part
FROM or

SPARKPLUG
SPARKPLUG
FUEL PUMP
FUEL PUMP
TAI LPI PE

TAI LPI PE

CRANKSHAFT
CRANKSHAFT

SELECT part
FROM or

UNI ON

SELECT part
FROM or

SPARKPLUG
FUEL PUMP
TAI LPI PE

CRANKSHAFT

, partnum to_date(null) date_in

ders listl

, to_null(null),
ders_list2;

PARTNUM DATE_I N
3323165

10/ 24/ 98
3323162

12/ 24/ 99
1332999

01/01/01
9394991

09/ 12/ 02

ders listl

ders_list2;

UNION ALL Example

The following statement combines the results with the UNION ALL operator, which does not eliminate duplicate

selected rows;

SELECT part

FROM orders_listl

UNI ON ALL
SELECT part

FROM orders_list2;

SPARKPLUG

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

12 of 86

FUEL PUMP
FUEL PUMP
TAI LPI PE
CRANKSHAFT
TAI LPI PE
TAI LPI PE

Note that the UNION operator returns only distinct rows that appear in either result, while the UNION ALL operator
returns all rows. A PART value that appears multiple timesin either or both queries (such as'FUEL PUMP) is
returned only once by the UNION operator, but multiple times by the UNION ALL operator.

INTERSECT Example

The following statement combines the results with the INTERSECT operator which returns only those rows returned
by both queries:

SELECT part

FROM orders_listl
| NTERSECT
SELECT part

FROM orders_li st 2;

TAI LPI PE

MINUS Example

The following statement combines results with the MINUS operator, which returns only rows returned by the first
guery but not by the second:

SELECT part

FROM orders_listl
M NUS
SELECT part

FROM orders_li st 2;

SPARKPLUG
FUEL PUMP

Other Operators
Table 3-10 lists other SQL operators.

Table 3-10 Other SQL Operators

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

13 of 86

Operator |Purpose Example
(+) Indicates that the preceding column isthe outer join columnin ajoin. |SELECT ename, dnane
See"Outer Joins". FROM enp, dept

WHERE dept . deptno =
enp. dept no(+) ;

PRIOR |Evauatesthe following expression for the parent row of the current |SELECT enpno, enane, ngr
row in ahierarchical, or tree-structured, query. In such aquery, you FROM enp

. . . CONNECT BY
must use this operator in the CONNECT BY clause to define the PRI OR enpno = ngr;
relationship between parent and child rows. Y ou can also use this '
operator in other parts of a SELECT statement that performs a
hierarchical query. The PRIOR operator is aunary operator and has
the same precedence as the unary + and - arithmetic operators. See
"Hierarchical Queries’.

SQL Functions

A SQL function is similar to an operator in that it manipulates data items and returns aresult. SQL functions differ
from operators in the format in which they appear with their arguments. This format allows them to operate on zero,
one, two, or more arguments:

function(argument, argunment, ...)
If you call a SQL function with an argument of a datatype other than the datatype expected by the SQL function,

Oracle implicitly converts the argument to the expected datatype before performing the SQL function. See "Data
Conversion'.

If you call a SQL function with anull argument, the SQL function automatically returns null. The only SQL functions
that do not follow this rule are CONCAT, DECODE, DUMP, NVL, and REPLACE.

SQL functions should not be confused with user functions written in PL/SQL. User functions are described in "User
Functions'.

In the syntax diagrams for SQL functions, arguments are indicated with their datatypes following the conventions
described in " Syntax Diagrams and Notation” in the Preface of this reference.

SQL functions are of these genera types:

e single-row (or scalar) functions
e group (or aggregate) functions

The two types of SQL functions differ in the number of rows upon which they act. A single-row function returns a
single result row for every row of aqueried table or view; a group function returns a single result row for a group of
gueried rows.

Single-row functions can appear in select lists (if the SELECT statement does not contain a GROUP BY clause),
WHERE clauses, START WITH clauses, and CONNECT BY clauses.

Group functions can appear in select lists and HAVING clauses. If you use the GROUP BY clausein aSELECT

statement, Oracle divides the rows of aqueried table or view into groups. In aquery containing a GROUP BY clause,
all elements of the select list must be expressions from the GROUP BY clause, expressions containing group

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

functions, or constants. Oracle applies the group functions in the select list to each group of rows and returns asingle
result row for each group.

If you omit the GROUP BY clause, Oracle applies group functionsin the select list to all the rowsin the queried table
or view. Y ou use group functions in the HAVING clause to eliminate groups from the output based on the results of
the group functions, rather than on the values of the individual rows of the queried table or view. For more
information on the GROUP BY and HAVING clauses, see the GROUP BY Clause and the HAVING Clause.

In the sections that follow, functions are grouped by the datatypes of their arguments and return val ues.

Number Functions

Number functions accept numeric input and return numeric values. This section lists the SQL number functions. Most
of these functions return values that are accurate to 38 decimal digits. The transcendental functions COS, COSH,
EXP, LN, LOG, SIN, SINH, SQRT, TAN, and TANH are accurate to 36 decimal digits. The transcendental functions
ACOS, ASIN, ATAN, and ATANZ2 are accurate to 30 decimal digits.

ABS
Purpose Returns the absol ute value of n.
Example SELECT ABS(-15) "Absol ute" FROV DUAL;
Absol ut e
15
ACOS
Purpose Returnsthe arc cosine of n. Inputs are in the range of -1 to 1, and outputs are in the range of 0 to

T and are expressed in radians.

Example SELECT ACOS(. 3)"Arc_Cosine” FROM DUAL;

Arc_Cosi ne

1.26610367

ASIN

14 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Purpose Returnsthe arc sine of n. Inputs are in the range of -1 to 1, and outputs are in the range of - /2 to
T /2 and are expressed in radians.

Example SELECT ASIN(.3) "Arc_Sine" FROM DUAL;

Arc_Sine
. 304692654
ATAN
Purpose Returnsthe arc tangent of n. Inputs are in an unbounded range, and outputs are in the range of

-T/2t0 T/2 and are expressed in radians.

Example SELECT ATAN(.3) "Arc_Tangent" FROM DUAL;

Arc_Tangent

. 291456794
ATAN2
Purpose Returnsthe arc tangent of n and m. Inputs are in an unbounded range, and outputs are in the range
of -T to T, depending on the signs of n and m, and are expressed in radians. Atan2(n,m) isthe
same as atan2(n/m)

Example SELECT ATAN2(.3, .2) "Arc_Tangent2" FROM DUAL;

Arc_Tangent 2

. 982793723

CEIL

15 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

Purpose

Example

Ccos

Purpose

Example

COSH

Purpose

Example

EXP

Purpose

Example

FLOOR

16 of 86

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Returns smallest integer greater than or equal to n.

SELECT CEI L(15.7) "Ceiling" FROM DUAL;

Returns the cosine of n (an angle expressed in radians).

SELECT COS(180 * 3.14159265359/ 180)
"Cosine of 180 degrees" FROM DUAL

Cosi ne of 180 degrees

Returns the hyperbolic cosine of n.

SELECT COSH(0) "Hyperbolic cosine of 0" FROM DUAL

Hyperbolic cosine of O

Returns e raised to the nth power; e = 2.71828183 ...

SELECT EXP(4) "e to the 4th power" FROM DUAL
e to the 4th power

54. 59815

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Purpose Returns largest integer equal to or lessthan n.
Example SELECT FLOOR(15.7) "Floor" FROV DUAL;
Fl oor
15
LN
Purpose Returns the natural logarithm of n, where n is greater than O.
Example SELECT LN(95) "Natural [og of 95" FROM DUAL;

Natural [og of 95

4.55387689

LOG

Purpose Returns the logarithm, base m, of n. The base m can be any positive number other than 0 or 1 and
n can be any positive number.

Example SELECT LOG(10, 100) "Log base 10 of 100" FROM DUAL

Log base 10 of 100

MOD

17 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ~ MAD(m n)

Purpose Returns remainder of m divided by n. Returnsm if nisO.

Example SELECT MOD(11,4) "Modul us" FROM DUAL;

Modul us

This function behaves differently from the classical mathematical modulus function whenm is
negative. The classical modulus can be expressed using the MOD function with this formula:

m- n * FLOOR(m n)

The following statement illustrates the difference between the MOD function and the classical
modulus:

SELECT m n, MOD(m n),
m- n * FLOOR(m' n) "d assical Mdul us"
FROM t est _nod_t abl e;

M N MOD(M N) C assical Mdulus
11 4 3 3
11 -4 3 -1
-11 4 -3 1
-11 -4 -3 -3
POWER
Purpose Returns m raised to the nth power. The base m and the exponent n can be any numbers, but if mis

negative, N must be an integer.

Example SELECT POWER(3,2) "Raised” FROM DUAL;

Rai sed

ROUND

18 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ROUND(n[, n1)

Purpose Returns n rounded to m placesright of the decimal point; if m is omitted, to O places. m can be
negative to round off digits|eft of the decimal point. m must be an integer.

Example 1 SELECT ROUND(15.193, 1) "Round” FROM DUAL;

Example2 SELECT ROUND(15.193,-1) "Round" FROM DUAL;

SIGN

Syntax SI GN(n)

Purpose If n<O, the function returns -1; if n=0, the function returns O; if n>0, the function returns 1.

Example SELECT SI G\(-15) "Sign" FROM DUAL;

Si gn
-1
SIN
Purpose Returnsthe sine of n (an angle expressed in radians).
Example SELECT SIN(30 * 3.14159265359/ 180)
"Sine of 30 degrees" FROM DUAL;
Si ne of 30 degrees
.5
SINH

19 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

Purpose

Example

SQRT

Purpose

Example

TAN

Purpose

Example

TANH

Purpose

Example

TRUNC

20 of 86

Returns the hyperbolic sine of n.

SELECT SINH(1) "Hyperbolic sine of 1" FROM DUAL

Hyperbolic sine of 1

1.17520119

Returns square root of n. The value n cannot be negative. SORT returnsa''real” result.

SELECT SQRT(26) "Square root" FROM DUAL

Squar e root

5.09901951

Returns the tangent of n (an angle expressed in radians).

SELECT TAN(135 * 3.14159265359/ 180)
"Tangent of 135 degrees" FROM DUAL

Tangent of 135 degrees

Returns the hyperbolic tangent of n.

SELECT TANH(.5) "Hyperbolic tangent of .5"
FROM DUAL;

Hyperbolic tangent of .5

. 462117157

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Purpose Returns n truncated to m decimal places; if m isomitted, to O places. m can be negative to
truncate (make zero) m digits left of the decimal point.

Examples SELECT TRUNC(15.79,1) "Truncate” FROM DUAL;

Truncat e

SELECT TRUNC(15.79,-1) "Truncate" FROM DUAL;

Truncat e

Character Functions

Single-row character functions accept character input and can return either character or number values.
Character Functions Returning Character Values

This section lists character functions that return character values. Unless otherwise noted, these functions al return
values with the datatype VARCHAR2 and are limited in length to 4000 bytes. Functions that return values of

datatype CHAR are limited in length to 2000 bytes. If the length of the return value exceeds the limit, Oracle truncates
it and returns the result without an error message.

CHR

21 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

22 of 86

Syntax CHR(n [USI NG NCHAR CS])

Purpose

1

Returns the character having the binary equivalent to
n in either the database character set or the national
character set.

If the USING NCHAR_CS clause is not specified,
this function returns the character having the binary
equivalent ton as a VARCHAR?2 value in the
database character set.

If the USING NCHAR_CS clause is specified, this
function returns the character having the binary
equivalent ton asaNVARCHAR2 vaueinthe
national character set.

Example SELECT CHR(67) | | CHR(65) | | CHR(84) " Dog"
FROM

DUAL,;

Example SELECT CHR(16705 USI NG NCHAR CS) FROM DUAL;

2

CONCAT

Syntax

Purpose

Example

CONCAT(char 1, char?2)

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Returns charl concatenated with char2. This function is equivalent to the concatenation operator
(. For information on this operator, see " Concatenation Operator".

This exampl e uses nesting to concatenate three character strings:

SELECT CONCAT(CONCAT(enane, ' is a '),

FROM emp
VWHERE enpno = 7900;

JAMES is a CLERK

"Job"

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

INITCAP

Purpose Returns char, with the first |etter of each word in uppercase, al other lettersin lowercase. Words
are delimited by white space or characters that are not alphanumeric.

Example SELECT I NI TCAP('the soap') "Capitals" FROV DUAL

Capitals
The Soap
LOWER
Purpose Returns char, with al letters lowercase. The return value has the same datatype as the argument

char (CHAR or VARCHAR?2).

Example SELECT LOWER(' MR SCOTT MCM LLAN) "Lower case”
FROM DUAL;

Lower case

nr. scott nmcmillan

LPAD

Purpose Returns charl, left-padded to length n with the sequence of charactersin char2; char2 defaultsto
asingle blank. If charl islonger than n, this function returns the portion of charl that fitsinn.

The argument n isthetotal length of the return value asit is displayed on your terminal screen. In
most character sets, thisis also the number of charactersin the return value. However, in some
multibyte character sets, the display length of acharacter string can differ from the number of
charactersin the string.

Example SELECT LPAD(' Page 1',15,"*.') "LPAD exanpl e"
FROM DUAL;

LPAD exanpl e

¥ or.*.* . *Page 1

LTRIM

23 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax LTRI M char [, set])

Purpose Removes characters from the left of char, with all the leftmost characters that appear in set
removed; set defaultsto asingle blank. Oracle begins scanning char from itsfirst character and
removes all charactersthat appear in set until reaching a character not in set and then returns the
result.

Example SELECT LTRIM' xyxXxyLAST WORD ,'xy') "LTRI M exanpl e"
FROM DUAL;

LTRI M exanpl

XxyLAST WORD

NLS_INITCAP

Purpose Returns char, with the first |etter of each word in uppercase, al other lettersin lowercase. Words
are delimited by white space or characters that are not alphanumeric. The value of 'nlsparams' can
have this form:

"NLS_SORT = sort'

wheresort is either alinguistic sort sequence or BINARY . The linguistic sort sequence handles
special linguistic requirements for case conversions. Note that these requirements can result in a
return value of a different length than the char. If you omit 'nlsparams’, this function uses the
default sort sequence for your session. For information on sort sequences, see Oracle8 Reference.

Example SELECT NLS_I NI TCAP
("ijsland', 'NLS SORT = Xbutch') "Capitalized"
FROM DUAL;

I Jsl and

NLS_LOWER

24 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ~ NLS_LOAER(char [, 'nlsparams'])

Purpose Returns char, with all |etters lowercase. The 'nlsparams' can have the same form and serve the
same purpose asinthe NLS _INITCAP function.

Example SELECT NLS_LOVER
("CTTA "', "NLS_SORT = XGerman') "Lowercase"
FROM DUAL;

NLS_UPPER

Syntax ~ NLS_UPPER(char [, 'nlsparams'])

Purpose Returns char, with al letters uppercase. The 'nlsparams' can have the same form and serve the
same purpose asinthe NLS _INITCAP function.

Example SELECT NLS_UPPER

(' groﬁe' , 'NLS_SORT = XGerman') "Uppercase"
FROM DUAL;

REPLACE

25 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ~ REPLACE(char, search_string[, replacement _string])

Purpose Returns char with every occurrence of search_string replaced with replacement_string. If
replacement_string is omitted or null, all occurrences of search_string are removed. If
search_string isnull, char isreturned. This function provides a superset of the functionality
provided by the TRANSLATE function. TRANSLATE provides single-character, one-to-one
substitution. REPLACE allows you to substitute one string for another as well asto remove
character strings.

Example SELECT REPLACE(' JACK and JUE','J',"'BL') "Changes”
FROM DUAL,;

BLACK and BLUE

RPAD

Syntax ~ RPAD(charl, n [, char2])

Purpose Returns charl, right-padded to length n with char2, replicated as many times as necessary; char2
defaultsto asingle blank. If charl islonger than n, this function returns the portion of charl that
fitsinn.

The argument n isthetotal length of the return value asit is displayed on your terminal screen. In
most character sets, thisis also the number of charactersin the return value. However, in some
multibyte character sets, the display length of acharacter string can differ from the number of
charactersin the string.

Example SELECT RPAD(' MORRI SON , 12," ab') "RPAD exanpl e"
FROM DUAL;

RPAD exanpl e

MORRI SONabab

RTRIM

26 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ~RTRIMchar [, set]

Purpose Returns char, with all the rightmost characters that appear in set removed; set defaultsto asingle
blank. RTRIM works similarly to LTRIM.

Example SELECT RTRI M ' BROMI NGyxXxy',"'xy') "RTRIMe.g."
FROM DUAL;

RTRI M e. g

BROWNI NGy x X

SOUNDEX

Syntax SOUNDEX(char)

Purpose Returns a character string containing the phonetic representation of char. Thisfunction alows
you to compare words that are spelled differently, but sound alike in English.

The phonetic representation is defined in The Art of Computer Programming, Volume 3: Sorting
and Searching, by Donald E. Knuth, asfollows:

¢ Retainthefirst letter of the string and remove all other occurrences of the following letters: a, e,
h,i,o,uw,y.

¢ Assign numbersto the remaining letters (after the first) asfollows:

, p, v =1
., J., Kk, q, s, X, z =2

¢ |f two or more letters with the same assigned number are adjacent, remove all but the first.

¢ Return thefirst four bytes padded with O.

Example SELECT enane
FROM emp
WHERE SOUNDEX(enane)
= SOUNDEX(' SMYTHE') ;

27 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

SUBSTR

Syntax SUBSTR(char, m[,n])

Purpose Returns a portion of char, beginning at character m, n characterslong. If misO, itistreated as
1. If mis positive, Oracle counts from the beginning of char to find the first character. If mis
negative, Oracle counts backwards from the end of char. If n is omitted, Oracle returns all
charactersto the end of char. If nislessthan 1, anull isreturned.

Floating-point numbers passed as arguments to substr are automatically converted to integers.

Examplel SELECT SUBSTR(' ABCDEFG , 3.1,4) "Subs”
FROM DUAL;

Subs

CDEF

Example2 SELECT SUBSTR(' ABCDEFG , -5, 4) "Subs"
FROM DUAL;

Subs

CDEF

SUBSTRB

28 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ~ SUBSTR(char, m [, n])

Purpose The same as SUBSTR, except that the arguments m and n are expressed in bytes, rather than in
characters. For a single-byte database character set, SUBSTRB is equivalent to SUBSTR.

Floating-point numbers passed as arguments to substrb are automatically converted to integers.

Example Assume a double-byte database character set:

SELECT SUBSTRB(' ABCDEFG , 5, 4. 2)
"Substring with bytes"
FROM DUAL;

Substring with bytes

TRANSLATE

Syntax TRANSLATE(char, from to)

Purpose Returns char with all occurrences of each character in from replaced by its corresponding
character into. Charactersin char that are not in from are not replaced. The argument from can
contain more characters than to. In this case, the extra characters at the end of from have no
corresponding charactersin to. If these extra characters appear in char, they are removed from
the return value. Y ou cannot use an empty string for to to remove all charactersin from from the
return value. Oracle interprets the empty string as null, and if this function has anull argument,
it returns null.

Example 1 The following statement trandates a license number. All letters'ABC...Z" aretrandated to 'X'
and all digits'012. .. 9 aretranslated to '9":

SELECT TRANSLATE(' 2KRW229' ,

' 0123456789ABCDEFGHI JKLMNOPQRSTUVWKYZ' ,

" 99999999 99 XXXXIXXXIXXXIAXXXXXXXXXXXXX') " Li cense"
FROM DUAL,

Li cense

Example 2 The following statement returns alicense number with the characters removed and the digits
remaining:

SELECT TRANSLATE(' 2KRW229' ,

'N122ANEARA7Q0ARANFCHI 1K1 AAINDMDQTI NAAYNV 7!

29 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

ViloUTUUV I VUMl Ml VINLIVINVNA \A W I UV VYN

' 0123456789")
"Transl at e exanpl e"
FROM DUAL;

Transl ate exanpl e

UPPER
Syntax UPPER(char)

Purpose Returns char, with al letters uppercase. The return value has the same datatype as the argument
char.

Example SELECT UPPER('Large') "Uppercase”
FROM DUAL;

Character Functions Returning Number Values
This section lists character functions that return number values.

ASCII

Syntax ~ ASCI I (char)

Purpose Returns the decimal representation in the database character set of the first character of char. If
your database character set is 7-bit ASCII, this function returns an ASCII value. If your database
character set is EBCDIC Code Page 500, this function returns an EBCDIC value. Note that there
isno similar EBCDIC character function.

Example SELECT ASCI | ("Q)
FROM DUAL,;

ASCI1 (' Q)

INSTR

30 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax I NSTR (charl,char2 [,n[,nl])

Purpose Searches charl beginning with its nth character for the mth occurrence of char2 and returns the
position of the character in charl that is the first character of this occurrence. If n is negative,
Oracle counts and searches backward from the end of charl. The value of m must be positive.
The default values of both n and m are 1, meaning Oracle begins searching at the first character
of charl for the first occurrence of char2. Thereturn valueis relative to the beginning of charl,
regardless of the value of n, and is expressed in characters. If the search is unsuccessful (if
char2 does not appear m times after the nth character of charl) the return valueisO.

Examplel SELECT INSTR(' CORPORATE FLOOR ,' OR, 3, 2)
“"I'nstring" FROM DUAL;

I nstring

Example2 SELECT INSTR(' CORPORATE FLOOR ,' OR, -3, 2)
"Reversed Instring"
FROM DUAL;

Reversed Instring

INSTRB

Syntax I NSTRB(char 1, char2[,n[,mM])

Purpose The same as INSTR, except that n and the return value are expressed in bytes, rather than in
characters. For a single-byte database character set, INSTRB is equivalent to INSTR.

Example This example assumes a double-byte database character set.
SELECT | NSTRB(' CORPORATE FLOOR ,' OR , 5, 2)

“Instring in bytes"
FROM DUAL;

Instring in bytes

LENGTH

31of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax LENGTH(char)

Purpose Returnsthe length of char in characters. If char has datatype CHAR, the length includes all
trailing blanks. If char is null, this function returns null.

Example SELECT LENGTH(' CANDIDE') "Length in characters”
FROM DUAL;

Length in characters

7
LENGTHB
Syntax LENGTHB(char)
Purpose Returnsthe length of char in bytes. If char isnull, thisfunction returns null. For asingle-byte

database character set, LENGTHB isequivalent to LENGTH.

Example This example assumes a double-byte database character set.

SELECT LENGTHB (' CANDIDE') "Length in bytes"
FROM DUAL;

Length in bytes

NLSSORT

32 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ~ NLSSORT(char [, 'nlsparams'])

Purpose Returns the string of bytes used to sort char. The value of 'nlsparams' can have the form
"NLS_SORT = sort'

wheresort isalinguistic sort sequence or BINARY . If you omit 'nlsparams', this function uses the
default sort sequence for your session. If you specify BINARY/, this function returns char. For
information on sort sequences, see the discussions of national language support in Oracle8 Reference.

Example This function can be used to specify comparisons based on a linguistic sort sequence rather on the
binary value of astring:

SELECT enane FROM enp
WHERE NLSSORT (enane, 'NLS _SORT = Gernman')
> NLSSORT ('S', '"NLS_SORT = German') ORDER BY enane;

SM TH
TURNER
WARD

Date Functions

Date functions operate on values of the DATE datatype. All date functions return avalue of DATE datatype, except
the MONTHS BETWEEN function, which returns a number.

ADD_MONTHS

Syntax ADD_MONTHS(d, n)

Purpose Returnsthe date d plus n months. The argument n can be any integer. If d isthe last day of the
month or if the resulting month has fewer days than the day component of d, then the result isthe
last day of the resulting month. Otherwise, the result has the same day component as d.

Example SELECT TO_CHAR(
ADD_MONTHS(hi redat e, 1),
' DD- MON- YYYY') "Next nonth"
FROM emp
VWHERE enanme = 'SM TH' ;

Next Mbnth

17- JAN- 1981

LAST_DAY

33 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax LAST_DAY(d)

Purpose Returns the date of the last day of the month that containsd. Y ou might use this function to
determine how many days are left in the current month.

Examplel SELECT SYSDATE,
LAST_DAY(SYSDATE) "Last",
LAST_DAY(SYSDATE) - SYSDATE "Days Left"

FROM DUAL;
SYSDATE Last Days Left
23- OCT-97 31- CCT- 97 8

Example 2 SELECT TO_CHAR(
ADD_MONTHS(
LAST_DAY(hi redate), 5),
' DD- MON- YYYY') "Five nonths"
FROM emp
WHERE enanme = ' MARTI N ;

Fi ve nont hs

28- FEB- 1982

MONTHS_BETWEEN

Syntax ~ MONTHS_BETWEEN(d1, d2)

Purpose Returns number of months between datesd1 and d2. If d1 islater than d2, result is positive; if
earlier, negative. If d1 and d2 are either the same days of the month or both last days of months,
the result is always an integer; otherwise Oracle calculates the fractional portion of the result
based on a 31-day month and considers the difference in time components of d1 and d2.

Example SELECT MONTHS BETWEEN
(TO_DATE(' 02- 02- 1995' , ' Mt DD- YYYY'),
TO DATE(' 01-01- 1995' ,' MM DD- YYYY')) "Mbnt hs"
FROM DUAL;

1. 03225806

NEW_TIME

Syntax NEW.TIME(d, z1, z2)

34 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Purpose Returns the date and time in time zone z2 when date and time in time zone z1 are d. The arguments
z1 and z2 can be any of these text strings:

AST Atlantic Standard or Daylight Time
ADT

BST Bering Standard or Daylight Time
BDT

CST Central Standard or Daylight Time
CDT

EST Eastern Standard or Daylight Time
EDT

GMT Greenwich Mean Time

HST Alaska-Hawaii Standard Time or Daylight Time.
HDT

MST Mountain Standard or Daylight Time
MDT

NST Newfoundland Standard Time

PST Pacific Standard or Daylight Time
PDT

YST Y ukon Standard or Daylight Time
YDT

35 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

NEXT_DAY

Syntax
Purpose

Example

ROUND

Syntax

Purpose

Example

SYSDATE

36 of 86

NEXT_DAY(d, char)

Returns the date of the first weekday named by char that is later than the date d. The argument char
must be aday of the week in your session's date language-€either the full name or the abbreviation. The
minimum number of |etters required is the number of lettersin the abbreviated version; any characters
immediately following the valid abbreviation are ignored. The return value has the same hours, minutes,
and seconds component as the argument d.

This example returns the date of the next Tuesday after March 15, 1992.

SELECT NEXT_DAY(' 15- MAR-92', ' TUESDAY') " NEXT DAY"
FROM DUAL,;

NEXT DAY

17- MAR- 92

ROUND(d[, frt])

Returns d rounded to the unit specified by the format modd fmt. If you omit fmt, d isrounded to
the nearest day. See "ROUND and TRUNC" for the permitted format models to use in fmt.

SELECT ROUND (TO _DATE ('27-CCT-92'),"' YEAR)
"New Year" FROM DUAL;

01- JAN-93

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax SYSDATE

Purpose Returns the current date and time. Requires no arguments. In distributed SQL statements, this
function returns the date and time on your local database. Y ou cannot use this function in the
condition of a CHECK constraint.

Example SELECT TO _CHAR
(SYSDATE, ' MVt DD- YYYY HH24: M : SS') " NOW
FROM DUAL;

10-29-1993 20:27:11

TRUNC

Syntax LTRUNC(d, [fnt])

Purpose Returns d with the time portion of the day truncated to the unit specified by the format model fmt.
If you omit fmt, d istruncated to the nearest day. See "ROUND and TRUNC" for the permitted
format modelsto usein fmt.

Example SELECT TRUNC(TO DATE(' 27-QOCT-92',' DD- MON-YY'), 'YEAR)
"New Year" FROM DUAL;

01- JAN-92

ROUND and TRUNC

Table 3-11 lists the format models you can use with the ROUND and TRUNC date functions and the units to which
they round and truncate dates. The default model, 'DD', returns the date rounded or truncated to the day with atime of
midnight.

Table 3-11 Date Format Models for the ROUND and TRUNC Date Functions

Format Model Rounding or Truncating Unit

ggc One greater than the first two digits of afour-digit year.

SYYYY Y ear (rounds up on July 1)

YEAR
SYEAR

37 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

YY

Y

L YYY ISO Y ear

Y

Y

|

Q Quarter (rounds up on the sixteenth day of the second month of the quarter)
m‘TH Month (rounds up on the sixteenth day)

MV

RM

WV Same day of the week asthe first day of the year.
W Same day of the week asthe first day of the 1SO year.
W Same day of the week as the first day of the month.
DDD D

DD ay

J

B@Y Starting day of the week

D

HH Hour

HH12

HH24

M Minute

The starting day of the week used by the format models DAY, DY, and D is specified implicitly by the initialization
parameter NLS TERRITORY . For information on this parameter, see Oracle8 Reference.

Conversion Functions

Conversion functions convert a value from one datatype to another. Generaly, the form of the function names follows
the convention datatype TO datatype. Thefirst datatype is the input datatype; the last datatype is the output datatype.

38 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

This section lists the SQL conversion functions.

CHARTOROWID

Syntax CHARTOROW D(char)

Purpose Converts avalue from CHAR or VARCHAR?2 datatype to ROWID datatype.

Example SELECT ename FROM enp
WHERE ROW D = CHARTOROW D(' AAAAf ZAABAAACPSAAQD) ;

CONVERT

Syntax CONVERT(char, dest_char_set [, source_char_set])

Purpose Converts a character string from one character set to another.
The char argument is the value to be converted.
Thedest_char_set argument isthe name of the character set to which char is converted.

Thesource_char_set argument is the name of the character set in which char is stored in the
database. The default value is the database character set.

Both the destination and source character set arguments can be either literals or columns
containing the name of the character set.

For complete correspondence in character conversion, it is essential that the destination character
set contains a representation of all the characters defined in the source character set. Where a
character does not exist in the destination character set, a replacement character appears.
Replacement characters can be defined as part of acharacter set definition.

Example SELECT CONVERT(' Gro3', 'US7ASCII', 'WESHP')
"Conver si on"
FROM DUAL;

Conver si on

Common character setsinclude;

39 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

US7ASCI | US 7-bit ASCII character set
WESDEC DEC West European 8-hit character set
WESHP HP West European Laserjet 8-bit character set
F7DEC DEC French 7-bit character set
WESEBCDI C500 IBM West European EBCDIC Code Page 500
WESPC850 IBM PC Code Page 850
WESI SC8859P1 I SO 8859-1 West European 8-bit character set
HEXTORAW
Syntax HEXTORAW char)
Purpose Converts char containing hexadecimal digitsto araw value.
Example | NSERT | NTO graphi cs (raw_col um)
SELECT HEXTORAW' 7D) FROM DUAL;
RAWTOHEX
Syntax RAWTCHEX(r aw)
Purpose Converts raw to a character value containing its hexadecimal equivalent.

Example SELECT RAWICHEX(raw_col utm) " Graphi cs"
FROM gr aphi cs;

ROWIDTOCHAR

40 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ROW DTOCHAR(r owi d)

Purpose Converts aROWID value to VARCHAR2 datatype. The result of this conversion is always 18
characterslong.

Example SELECT ROW D
FROM of fi ces
VWHERE
ROW DTOCHAR(ROW D) LI KE ' %Br 1AAB% ;

AAAAZG AABAAABr 1AAB

TO_CHAR, date conversion
Syntax TO_CHAR(d [, fnt [, "nlsparams']])
Purpose Convertsd of DATE datatype to avaue of VARCHAR?2 datatype in the format specified by the

date format fmt. If you omit fmt, d is converted to a VARCHAR2 vaue in the default date format.
For information on date formats, see "Format Models".

The 'nlsparams' specifies the language in which month and day names and abbreviations are
returned. This argument can have thisform:

" NLS_DATE_LANGUAGE = | anguage'

If you omit nlsparams, this function uses the default date language for your session.

Example SELECT TO_CHAR(HI REDATE, 'Month DD, YYYY')
"New date format" FROM enp
WHERE enanme = ' BLAKE';

New dat e for nat

TO_CHAR, number conversion

Syntax TO CHAR(n [, fnt [, 'nlsparanms']])

Purpose Convertsn of NUMBER datatype to avalue of VARCHAR2
datatype, using the optional number format fmt. If you omit fmt, nis
converted to a VARCHAR2 value exactly long enough to hold its

41 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

significant digits. For information on number formats, see "Format
Models'.

The 'nlsparams' specifies these characters that are returned by
number format elements:

- decimal character

- group separator

- local currency symbol

- international currency symbol

This argument can have thisform:

" NLS_NUMERI C_CHARACTERS = ''dg""
NLS CURRENCY = ''text"'
NLS | SO CURRENCY = territory '

The charactersd and g represent the decimal character and group
separator, respectively. They must be different single-byte
characters. Note that within the quoted string, you must use two
single quotation marks around the parameter values. Ten characters
are available for the currency symbol.

If you omit 'nlsparams' or any one of the parameters, this function
uses the default parameter values for your session.

Example 1 In this example, the output is blank padded to the |eft of the
currency symbol.
SELECT TO _CHAR(-10000, ' L99G999D99M ') " Amount"
FROM DUAL;
Anmount
$10, 000. 00-

Exanpl e 2 SELECT TO_CHAR(-10000, ' L99G999D99M ' ,
"NLS_NUMERI C_CHARACTERS = "', .""
NLS CURRENCY = ''AusDollars'' ') "Amount"
FROM DUAL;

AusDol | ars10. 000, 00-

Notes:

42 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

43 of 86

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

* Intheoptional number format fmt, L designateslocal currency symbol and M|
designates atrailing minus sign. See Table 3-13 for a complete listing of number

format e ements.

e During aconversion of Oracle numbersto string, if arounding operation occurs
that overflows or underflows the Oracle NUMBER range, then ~ or -~ may be
returned, representing infinity and negative infinity, respectively. This event
typically occurs when you are using TO_CHAR() with arestrictive number format

string, causing a rounding operation.

TO_DATE
Syntax TO_DATE(char [, fnt [, 'nlsparans']])
Purpose Converts char of CHAR or VARCHAR2

datatypeto avalue of DATE datatype. The
fmt isadate format specifying the format of
char. If you omit fmt, char must bein the
default date format. If fmt is'J, for Julian,
then char must be an integer. For information
on date formats, see "Format Models'.

The'nlsparams' has the same purposein this
function asinthe TO_CHAR function for
date conversion.

Do not usethe TO_DATE function with a
DATE valuefor the char argument. The
returned DATE value can have adifferent
century value than the origina char,
depending on fmt or the default date format.

For information on date formats, see "Date
Format Models".

Examplel NSERT | NTO bonus (bonus_dat e)
SELECT TO_DATE(
"January 15, 1989, 11:00 A M,
"Month dd, YYYY, HHM A M',
"NLS_DATE_LANGUAGE = American')
FROM DUAL;

TO_MULTI_BYTE

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax TO_MULTI _BYTE(char)

Purpose Returns char with all of its single-byte characters converted to their corresponding multibyte
characters. Any single-byte charactersin char that have no multibyte equivalents appear in the
output string as single-byte characters. This function is only useful if your database character set

contains both single-byte and multibyte characters.

TO_NUMBER
Syntax TO NUMBER(char [,fmt [, 'nlsparams']])
Purpose Converts char, avalue of CHAR or VARCHARRZ datatype containing a number in the format

specified by the optional format model fmt, to avalue of NUMBER datatype.

Examplel UPDATE enp SET sal = sal +
TO_NUMBER(' 100. 00', '9G999D99')
WHERE ename = ' BLAKE' ;

The 'nlsparams' string in this function has the same purpose asit doesinthe TO_CHAR
function for number conversions.

Example2 SELECT TO_NUMBER(' - AusDol | ars100', ' L9G999D99",
" NLS_NUMERI C_CHARACTERS = "', .""'
NLS_CURRENCY = '' AusDol l ars""
") "Amount"
FROM DUAL;

TO_SINGLE_BYTE

Syntax TO_SI NGLE_BYTE(char)

Purpose Returns char with all of its multibyte character converted to their corresponding single-byte
characters. Any multibyte charactersin char that have no single-byte equivalents appear in the
output as multibyte characters. Thisfunction is only useful if your database character set contains

both single-byte and multibyte characters.

44 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

TRANSLATE USING

Syntax TRANSLATE(text USING {CHAR CS | NCHAR CS })

Purpose Converts text into the character set specified for
conversions between the database character set and
the national character set.

The text argument is the expression to be converted.

Specifying the USING CHAR_CS argument
converts text into the database character set. The
output datatypeis VARCHAR2.

Specifying the USING NCHAR_CS argument
converts text into the national character set. The
output datatype is NVARCHAR2.

Thisfunction is similar to the Oracle CONVERT
function, but must be used instead of CONVERT if
either the input or the output datatype is being used
as NCHAR or NVARCHAR?2.

ExampleCREATE TABLE t1 (char_col CHAR(20),
1 nchar _col nchar(20));
I NSERT INTO t1
VALUES ('Hi', N Bye');
SELECT * FROMt 1;

ExampleUPDATE t1 SET

2 nchar _col = TRANSLATE(char _col USI NG NCHAR CS);

UPDATE t1 SET

char _col = TRANSLATE(nchar _col USI NG CHAR CS);

SELECT * FROM t 1,

ExampleUPDATE t1 SET

3 nchar _col = TRANSLATE(' deo' USI NG NCHAR_CS);

UPDATE t1 SET

char _col = TRANSLATE(N deo' USI NG CHAR CS);

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

46 of 86

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Other Single-Row Functions

DUMP

Syntax DUMP(expr[,return_format[,start_position[,length]]])

Purpose

Returns a VARCHAR?2 value containing the datatype code, length in
bytes, and internal representation of expr. The returned result is always
in the database character set. For the datatype corresponding to each
code, see Table 2-1.

The argument return_format specifies the format of the return value
and can have any of the values listed below.

By default, the return value contains no character set information. To
retrieve the character set name of expr, specify any of the format
values below, plus 1000. For example, areturn_format of 1008
returns the result in octal, plus provides the character set name of expr.

8 returns result in octal notation.

10 returns result in decimal notation.

16 returns result in hexadecimal notation.
17 returns result as single characters.

The arguments start_position and length combine to determine which
portion of theinternal representation to return. The default isto return
the entire internal representation in decimal notation.

If expr isnull, this function returns 'NULL".

Example SELECT DUMP(' abc', 1016)

1

FROM

DUAL,;

DUMP(' ABC , 1016)

Typ=96 Len=3 Charact er Set =WWEBDEC: 61, 62, 63

Example SELECT DUMP(enane, 8, 3, 2) "OCTAL"
FROM emp

2

VWHERE enane = ' SCOIT' ;

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Type=1 Len=5: 117,124

Example SELECT DUMP(enane, 10, 3, 2) "ASCl|"
3 FROM emp
VWHERE enane = ' SCOIT' ;

Type=1 Len=5: 79, 84

EMPTY_[B | C]LOB
Syntax EMPTY_[B| C] LOB()
Purpose Returns an empty LOB locator that can be used to initialize aLOB variable or in an
INSERT or UPDATE statement to initialize aLOB column or attributeto EMPTY .

EMPTY meansthat the LOB isinitialized, but not populated with data.

Y ou cannot use the locator returned from this function as a parameter to the
DBMS L OB package or the OCI.

Examples! NSERT | NTO | ob_t abl VALUES (EMPTY_BLOB());
UPDATE | ob_t abl
SET cl ob_col = EMPTY_BLOB();

BFILENAME

47 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

48 of 86

Syntax ~ BFILENAME (" directory', 'filenane")

Purpose Returns a BFILE locator that is associated with aphysical LOB hinary file on the server'sfile
system. A directory isan aliasfor afull pathname on the server's file system where the files are
actually located; 'filename' isthe name of the filein the server'sfile system.

Neither 'directory' nor 'filename' need to point to an existing object on the file system at the time
you specify BFILENAME. However, you must associate a BFILE value with aphysical file
before performing subsequent SQL, PL/SQL, DBMS_L OB package, or OCI operations. For
more information, see CREATE DIRECTORY.

Note: Thisfunction does not verify that either the directory or file specified actually exists.
Therefore, you can call the CREATE DIRECTORY command after BFILENAME. However, the
object must exist by the time you actually use the BFILE locator (for example, as a parameter to
one of the OCILob or DBMS L OB operations such as OCILobFileOpen() or
DBMS_LOB.FILEOPENY()).

For more information about LOBS, see Oracle8 Application Developer's Guide and Oracle Call
Interface Programmer's Guide.

Example | NSERT INTO file_tbl

VALUES (BFILENAME ('lob _dirl', '"imagel.gif'));
GREATEST
Syntax =~ GREATEST(expr [, expr] ...)
Purpose Returnsthe greatest of the list of exprs. All exprs after the first are implicitly converted to the

datatype of thefirst exprs before the comparison. Oracle compares the exprs using nonpadded
comparison semantics. Character comparison is based on the value of the character in the
database character set. One character is greater than another if it has ahigher value. If the value
returned by thisfunction is character data, its datatype is always VARCHAR2.

Example SELECT GREATEST (' HARRY', ' HARRIOT', ' HAROLD)
"Great" FROM DUAL;

LEAST

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ~ LEAST(expr [, expr] ...)

Purpose Returnsthe least of thelist of exprs. All exprs after the first areimplicitly converted to the
datatype of thefirst expr before the comparison. Oracle compares the exprs using nonpadded
comparison semantics. If the value returned by this function is character data, its datatypeis
aways VARCHAR2.

Example SELECT LEAST(' HARRY',' HARRI OT",' HAROLD) "LEAST"
FROM DUAL,

NLS_CHARSET DECL_LEN

Syntax NLS_CHARSET_DECL_LEN(byt ecnt, csid)

Purpose Returnsthe declaration width (in number of characters) of an NCHAR column. The bytecnt argument is
the width of the column. The csid argument is the character set 1D of the column.

Example

SELECT NLS_CHARSET_DECL_LEN
(200, nls_charset_id('jal6eucfixed'))
FROM DUAL;

NLS_CHARSET DECL_LEN(200, NLS_CHARSET | D(' JALI6EUCFI XED))

NLS_CHARSET_ID

49 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax NLS_CHARSET_| D(t ext)

Purpose Returnsthe NL S character set ID
number corresponding to NLS
character set name, text. The text
argument isarun-time VARCHAR2
value. The text value'CHAR_CS
returns the server's database character
set ID number. Thetext value
'NCHAR_CS returns the server's
national character set ID number.

Invalid character set names return
null.

For alist of character set names, see
Oracle8 Reference.

Example SELECT NLS_CHARSET | (' j al6euc’)
| FROM DUAL;

NLS_CHARSET_I D(' JA16EUC)

Example SELECT NLS_CHARSET_I (' char _cs')
2 FROM DUAL;

NLS_CHARSET | D(' CHAR CS')

Example SELECT NLS_CHARSET_I (' nchar _cs')
3 FROM DUAL;

NLS_CHARSET | D(' NCHAR CS')

NLS_CHARSET_NAME

50 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax NLS_CHARSET_NAME(n)

Purpose Returns the name of the NL S character set
corresponding to ID number n. The character set
nameisreturned asaVARCHAR?Z valuein the
database character set.

If nisnot recognized as avalid character set ID,
this function returns null.

For alist of character set IDs, see Oracle8
Reference.

Example SELECT NLS_CHARSET_NAME(2)
FROM DUAL;

NVL

Syntax ~ NVL(exprl, expr2)

Purpose If exprl isnull, returnsexpr2; if exprl isnot null, returns exprl. The arguments exprl and expr2
can have any datatype. If their datatypes are different, Oracle converts expr2 to the datatype of
exprl before comparing them. The datatype of the return value is always the same as the datatype
of exprl, unlessexprl is character data, in which case the return value's datatype is VARCHAR2.

Example SELECT enanme, NVL(TO_CHAR(COW), ' NOT
APPLI CABLE')
" COW SSI ON' FROM enp
WHERE deptno = 30;

ENAME COW SSI ON
ALLEN 300

WARD 500

MARTI N 1400

BLAKE NOT APPLI CABLE
TURNER 0

JAMES NOT APPLI CABLE

uiD

51 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

52 of 86

Syntax

Purpose

USER

Syntax

Purpose

u b

USER

Returns an integer that uniquely identifies the current user.

Returns the current Oracle
user with the datatype
VARCHAR2. Oracle
compares values of this
function with blank-padded
comparison semantics.

In adistributed SQL
statement, the UID and
USER functions identify the
user on your local database.
Y ou cannot use these
functions in the condition of
aCHECK constraint.

Example SELECT USER, U D FROM DUAL;

USERENV

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

53 of 86

Syntax USERENV(opti on)

Purpose Returnsinformation of VARCHAR?Z datatype about the current
session. Thisinformation can be useful for writing an
application-specific audit trail table or for determining the
language-specific characters currently used by your session.

Y ou cannot use USERENYV in the condition of a CHECK
constraint. The argument option can have any of these values:

" | SDBA' returns 'TRUE' if you currently have the ISDBA role
enabled and 'FALSE' if you do not.

" LANGUAGE' returns the language and territory currently used by
your session along with the database character set in
thisform:

| anguage_territory. characterset

" TERM NAL" returns the operating system identifier for your current
session'sterminal. In distributed SQL statements, this
option returns the identifier for your local session. Ina
distributed environment, thisis supported only for
remote SELECTS, not for remote INSERTS,
UPDATES, or DELETES.

" SESSIONI D' returns your auditing session identifier. Y ou cannot
use this option in distributed SQL statements. To use
this keyword in USERENV, the initialization
parameter AUDIT_TRAIL must be set to TRUE.

" ENTRYI D returns available auditing entry identifier. Y ou cannot
use this option in distributed SQL statements. To use
this keyword in USERENV, the initialization
parameter AUDIT_TRAIL must be set to TRUE.

' LANG Returns the 1SO abbreviation for the language name, a
shorter form than the existing 'LANGUAGE'
parameter.

"I NSTANCE' Returnsthe instance identification number of the
current instance.

Example SELECT USERENV(' LANGUAGE') "Language" FROM DUAL;
Language

AMERI CAN_AMERI CA. WVESDEC

VSIZE

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax VSI ZE(expr)

Purpose Returns the number of bytesin theinternal representation of expr. If expr isnull, thisfunction
returns null.

Example SELECT enane, VSIZE (enane) "BYTES'
FROM emp
WHERE deptno = 10;

ENAME BYTES
CLARK 5
Kl NG 4
M LLER 6

Object Reference Functions

Object reference functions manipulate REFs-references to objects of specified object types. For more information
about REFs, see Oracle8 Concepts and Oracle8 Application Developer's Guide.

DEREF

Syntax DEREF(e)

Purpose Returns the object reference of argument e. Argument e must be an expression that returns a REF
to an object.

Example CREATE TABLE tbl(cl NUMBER c2 REF t1);
SELECT DEREF(c2) FROM tbi;

REFTOHEX

Syntax REFTOHEX(r)

Purpose Converts argument r to a character value containing its hexadecimal equivalent.

Example ~CREATE TABLE tbl(cl NUMBER, c2 REF t1);
SELECT REFTOHEX(C2) FROM tbi;

MAKE_REF

54 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax ~ MAKE_REF(table, key [, key...])

Purpose Creates a REF to arow of an object view using key as the primary key. For more information
about object views, see Oracle8 Application Developer's Guide.

Example CREATE TYPE t1 AS OBJECT(a NUMBER, b NUVBER);

CREATE TABLE tb1
(c1 NUMBER, c2 NUMBER, PRI MARY KEY(cl, c2)):

CREATE VIEWvV1 OF t1 WTH OBJECT O D(a, b) AS
SELECT * FROM t b1,

SELECT MAKE_REF(v1, 1, 3) FROM DUAL;

Group Functions

Group functions return results based on groups of rows, rather than on single rows. In thisway, group functions are
different from single-row functions. For a discussion of the differences between group functions and single-row
functions, see"SQL Functions'.

Many group functions accept these options:

DISTINCT Thisoption causes a group function to consider only distinct values of the argument expression.
ALL This option causes a group function to consider al values, including all duplicates.

For example, the DISTINCT averageof 1, 1, 1, and 3is 2; the ALL averageis 1.5. If neither option is specified, the
defaultisALL.

All group functions except COUNT (*) ignore nulls. Y ou can use the NVL in the argument to a group function to
substitute avalue for anull.

If aquery with a group function returns no rows or only rows with nulls for the argument to the group function, the
group function returns null.

AVG

55 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

Syntax AVG([DI STI NCT| ALL] n)
Purpose Returns average value of n.
Example SELECT AV@E sal) "Average"
FROM enp;
Aver age
2077. 21429
COUNT

Syntax COUNT({* | [DI STI NCT| ALL] expr})

Purpose Returns the number of rowsin the query.
If you specify expr, this function returns rows

where expr isnot null. Y ou can count either al
rows, or only distinct values of expr.

If you specify the asterisk (*), this function returns
all rows, including duplicates and nulls.

Example SELECT COUNT(*) "Total"
1 FROM enp;

Example SELECT COUNT(j ob) "Count”
2 FROM enp;

Example SELECT COUNT(DI STINCT job) "Jobs"
3 FROM enp;

56 of 86

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

MAX
Syntax MAX([DI STI NCT| ALL] expr)
Purpose Returns maximum value of expr.
Example SELECT MAX(sal) "Maxi munm' FROM enp;
Maxi mum
5000
MIN
Syntax M N([DI STI NCT| ALL] expr)
Purpose Returns minimum value of expr.
Example SELECT M N(hiredate) "Earliest" FROM enp;
Earl i est
17- DEC- 80
STDDEV

Syntax ~ STDDEV([DI STINCT| ALL] x)

Purpose Returns standard deviation of x, a number. Oracle calculates the standard deviation as the square
root of the variance defined for the VARIANCE group function.

Example SELECT STDDEV(sal) "Deviation”
FROM enp;

Devi ati on

1182. 50322

SUM

57 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Syntax SUM [DI STI NCT| ALL] n)
Purpose Returns sum of values of n.
Example SELECT SUM sal) "Total"
FROM enp;
Tot al
29081
VARIANCE

Syntax VARI ANCE([DI STI NCT| ALL] x)

Purpose Returns variance of x, anumber. Oracle calculates the variance of x using this formula:

where:

X; is one of the elements of x.

n isthe number of eementsin the set x. If nis 1, the variance is defined to be 0.

Example SELECT VARI ANCE(sal) "Variance”
FROM enp;

Vari ance

1389313. 87

User Functions

Y ou can write your own user functionsin PL/SQL to provide functionality that is not availablein SQL or SQL
functions. User functions are used in a SQL statement anywhere SQL functions can be used; that is, wherever
€Xpression can occur.

For example, user functions can be used in the following:

58 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

the select list of a SELECT command

the condition of a WHERE clause

CONNECT BY, START WITH, ORDER BY, and GROUP BY clauses
the VALUES clause of an INSERT command

the SET clause of an UPDATE command

For a complete description on the creation and use of user functions, see Oracle8 Application Developer's Guide.

Prerequisites

User functions must be created as top-level PL/SQL functions or declared with a package specification before they
can be named within a SQL statement. Create user functions astop-level PL/SQL functions by using the CREATE
FUNCTION statement described in CREATE FUNCTION. Specify packaged functions with a package with the
CREATE PACKAGE statement described in CREATE PACKAGE.

To call apackaged user function, you must declare the RESTRICT REFERENCES pragma in the package
specification.

Privileges Required

To use auser function in a SQL expression, you must own or have EXECUTE privilege on the user function. To
guery aview defined with auser function, you must have SELECT privileges on the view. No separate EXECUTE
privileges are needed to select from the view.

Restrictions on User Functions
User functions cannot be used in situations that require an unchanging definition. Thus, a user function cannot:

e beused in aCHECK constraint clause of aCREATE TABLE or ALTER TABLE command

e peusedinaDEFAULT clause of aCREATE TABLE or ALTER TABLE command

e contain OUT or IN OUT parameters

¢ update the database

¢ read or write package state if the function is aremote function

e usetheparallelism_clause in SQL commandsin the function if the function alters package state

e update variables defined in the function unless the function isalocal function andisused in a SELECT ligt,
VALUES clause of an INSERT command, or SET clause of an UPDATE command

Name Precedence

With PL/SQL, the names of database columns take precedence over the names of functions with no parameters. For
example, if user SCOTT creates the following two objects in his own schema:

CREATE TABLE enmp(new_sal NUMBER, ...);
CREATE FUNCTI ON new_sal RETURN NUMBER IS BEG N ... END;

then in the following two statements, the referenceto NEW_SAL refersto the column EMP.NEW_SAL.:
SELECT new sal FROM enp;

SELECT enp. new_sal FROM enp;

To access the function NEW_SAL, you would enter:

SELECT scott.new sal FROM enp;

59 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

60 of 86

Here are some sample calls to user functions that are allowed in SQL expressions.

circle_area (radius)
payroll.tax_rate (enmpno)
scott. payroll.tax_rate (dependent, enpno) @y

Example

For example, to call the TAX_RATE user function from schema SCOTT, execute it against the SS NO and SAL
columnsin TAX_TABLE, and place the resultsin the variable INCOME_TAX, specify the following:

SELECT scott.tax_rate (ss_no, sal)
| NTO i ncome_t ax
FROM t ax_t abl e
WHERE ss_no = tax_id;

Naming Conventions

If only one of the optional schema or package names is given, thefirst identifier can be either aschemaname or a
package name. For example, to determine whether PAYROLL in the reference PAYROLL.TAX_RATE isaschema
or package name, Oracle proceeds as follows:

e Check for the PAYROLL packagein the current schema.

e |f aPAYROLL packageis not found, look for a schemaname PAYROLL that contains atop-level
TAX_RATE function. If no such function isfound, return an error message.

¢ |f the PAYROLL packageisfound in the current schema, look for a TAX_RATE function in the PAYROLL
package. If no such function isfound, return an error message.

You can aso refer to astored top-level function using any synonym that you have defined for it.

Format Models

A format model is acharacter literal that describes the format of DATE or NUMBER data stored in a character
string. Y ou can use aformat model as an argument of the TO_CHAR or TO_DATE function:

¢ to specify the format for Oracle to use to return a value from the database to you
¢ to specify the format for avalue you have specified for Oracle to store in the database

Note that aformat model does not change the internal representation of the value in the database.
This section describes how to use;

e number format models

¢ date format models

¢ format modd modifiers

Changing the Return Format

Y ou can use aformat model to specify the format for Oracle to use to return values from the database to you.
Example 1

The following statement selects the commission values of the employeesin Department 30 and usesthe TO_CHAR
function to convert these commissions into character values with the format specified by the number format model
'$9,990.99"

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

SELECT enane enpl oyee,
FROM emp

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

TO CHAR(comm ' $9, 990.99') commi ssion

WHERE deptno = 30;
EMPLOYEE = COWM SSI ON
ALLEN $300. 00
WARD $500. 00
MARTI N $1, 400. 00
BLAKE
TURNER $0. 00
JAMES

Because of thisformat model, Oracle returns commissions with leading dollar signs, commas every three digits, and
two decimal places. Note that TO_CHAR returns null for all employees with null in the COMM column.

Example 2

The following statement selects the date on which each employee from department 20 was hired and uses the
TO_CHAR function to convert these dates to character strings with the format specified by the date format model
fmMonth DD, YYYY":

SELECT enane, TO CHAR(Hiredate,' fnivonth DD, YYYY') hiredate
FROM emp

WHERE deptno = 20;
ENAMVE H REDATE
SM TH Decenmber 17, 1980
JONES April 2, 1981
SCOTT April 19, 1987
ADANS May 23, 1987
FORD December 3, 1981
LEW S Cct ober 23, 1997

With this format model, Oracle returns the hire dates with the month spelled out (as specified by "fm" and discussed
in"Format Model Modifiers"), two digits for the day, and the century included in the year.

Supplying the Correct Format

Y ou can use format models to specify the format of a value that you are converting from one datatype to another
datatype required for a column. When you insert or update a column value, the datatype of the value that you specify
must correspond to the column's datatype. For example, avalue that you insert into a DATE column must be avalue
of the DATE datatype or a character string in the default date format (Oracle implicitly converts character stringsin
the default date format to the DATE datatype). If the value isin another format, you must usethe TO_DATE function
to convert the value to the DATE datatype. Y ou must also use aformat model to specify the format of the character
string.

Example

The following statement updates BAKER's hire date using the TO_DATE function with the format mask 'YYYY
MM DD' to convert the character string '1992 05 20' to aDATE value:

UPDATE enmp
SET hiredate = TO DATE(' 1992 05 20',' YYYY MM DD)
VWHERE enane = ' BLAKE' ;

61 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Number Format Models
Y ou can use number format models

¢ inthe TO_CHAR function to trandate avalue of NUMBER datatype to VARCHAR2Z datatype
¢ inthe TO_NUMBER function to trandate avalue of CHAR or VARCHAR?2 datatype to NUMBER datatype

All number format models cause the number to be rounded to the specified number of significant digits. If avalue has
more significant digits to the |eft of the decimal place than are specified in the format, pound signs (#) replace the
value. If apositive vaueis extremely large and cannot be represented in the specified format, then the infinity sign (~)
replacesthe value. Likewise, if anegative value is extremely small and cannot be represented by the specified format,
then the negative infinity sign replaces the value (-~).

Number Format Elements

A number format model is composed of one or more number format elements. Table 3-12 lists the elements of a
number format model. Examples are shown in Table 3-13.

¢ |f anumber format mode does not contain the MI, S, or PR format € ements, negative return values
automatically contain aleading negative sign and positive val ues automatically contain aleading space.

¢ A number format model can contain only asingle decimal character (D) or period (.), but it can contain
multiple group separators (G) or commas (,).

e A number format model must not begin with acommac (,).

e A group separator or comma cannot appear to the right of a decimal character or period in anumber format
model.

Table 3-12 Number Format Elements

62 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

63 of 86

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Element Example |Description

9 9999 Return value with the specified number of digits with aleading space if positive.
Return value with the specified number of digits with aleading minus if negative.
Leading zeros are blank, except for a zero value, which returns a zero for the integer |
of the fixed-point number.

0 0999 Return leading zeros.

9990 Return trailing zeros.

$ $9999 Return value with aleading dollar sign.

B B9999 Return blanks for the integer part of afixed-point number when the integer part is zel
(regardless of "0's in the format modd!).

Ml 9999M Return negative value with atrailing minus sign "-".
Return positive value with atrailing blank.

S S9999 Return negative value with aleading minus sign "'-".

9999S Return positive value with aleading plus sign "+".

Return negative value with atrailing minus sign "-".
Return positive value with atrailing plus sign "+".

PR 9999PR | Return negative value in <angle brackets>.
Return positive value with aleading and trailing blank.

D 99D99 Return adecimal character (that is, aperiod ".") in the specified position.

G 9099 Return a group separator in the position specified.

C C999 Return the ISO currency symbol in the specified position.

L L999 Return the local currency symbol in the specified position.

, (comma) |9, 999 Return a commain the specified position.

. (period) |99. 99 Return adecimal point (that is, aperiod ".") in the specified position.

\4 999V99 | Return avalue multiplied by 10" (and if necessary, round it up), where n is the numio
9's after the"V".

EEEE 9. 9EEEE | Return avalue using in scientific notation.

RN RN Return avalue as Roman numerals in uppercase.

rn Return avalue as Roman numeralsin lowercase.
Vaue can be an integer between 1 and 3999.

FM FMBO. 9 | Returnavauewith noleading or trailing blanks.

Example

Table 3-13 shows the results of the following query for different values of number and ‘fmt":

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

SELECT TO CHAR(nunber, 'fnt')
FROM DUAL

Table 3-13 Results of Example Number Conversions

64 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

65 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

number ‘fmt’ Result
-1234567890 9999999999S ' 1234567890-"
0 99. 99 ‘. oo

+0. 1 99. 99 ' 0.10
-0.2 99. 99 - 20

0 90. 99 ' 0.00

+0. 1 90. 99 ' 0.10
-0.2 90. 99 ' -0.20

0 9999 o

1 9999 T

0 B9999

1 B9999 T

0 B90. 99

+123. 456 999. 999 ' 123. 456’
-123. 456 999. 999 '-123. 456'
+123. 456 FMB99. 009 '123. 456'
+123. 456 9. 9EEEE ' 1. 2E+02'
+1E+123 9. 9EEEE ' 1. 0E+123
+123. 456 FMB. OEEEE "1. 23E+02'
+123. 45 FMVB99. 009 '123. 45
+123.0 FMVB99. 009 '123. 00
+123. 45 L999. 99 ' $123.45'
+123. 45 FML99. 99 ' $123. 45’
+1234567890 9999999999S ' 1234567890+

The MI and PR format elements can appear only in the last position of a number format model. The S format element
can appear only inthe first or last position of a number format model.

The characters returned by some of these format elements are specified by initialization parameters. Table 3-14 lists
these elements and parameters.

Table 3-14 Number Format Element Values Determined by Initialization Parameters

66 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Element Description Initialization Parameter

D Decimal character NLS NUMERIC_CHARACTER
G Group separator NLS NUMERIC CHARACTER
C ISO currency symbol NLS ISO CURRENCY

L Local currency symbol NLS CURRENCY

Y ou can specify the characters returned by these format e ements implicitly using the initialization parameter
NLS TERRITORY. For information on these parameters, see Oracle8 Reference.

Y ou can change the characters returned by these format elements for your session with the ALTER SESSION
command. Y ou can aso change the default date format for your session with the ALTER SESSION command. For
information, see ALTER SESSION.

Date Format Models
Y ou can use date format models

¢ inthe TO_CHAR function to translate aDATE value that isin aformat other than the default date format
¢ inthe TO_DATE function to trandate a character value that isin aformat other than the default date format

Default Date Format

The default date format is specified either explicitly with the initialization parameter NLS DATE_FORMAT or
implicitly with the initialization parameter NLS TERRITORY . For information on these parameters, see Oracle8
Referencee.

Y ou can change the default date format for your session with the ALTER SESSION command. For information, see
ALTER SESSION.

Maximum Length

Thetotal length of adate format model cannot exceed 22 characters.

Date Format Elements

A date format model is composed of one or more date format elements as listed in Table 3-15. For input format
models, format items cannot appear twice, and format items that represent similar information cannot be combined.
For example, you cannot use'SYY YY" and 'BC' in the same format string. Only some of the date format elements can

be used inthe TO_DATE function as noted in Table 3-15.

Table 3-15 Date Format Elements

Element |Specify in TO_DATE? |Meaning

Yes Punctuation and quoted text is reproduced in the result.

"text'

67 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

QPD_ Yes AD indicator with or without periods.

QMM Yes Meridian indicator with or without periods.

E.CC. Yes BC indicator with or without periods.

cC No One greater than the first two digits of afour-digit year; "S" prefixes BC dates

scc with "-". For example, '20' from '1900'.

D Yes Day of week (1-7).

DAY Yes Name of day, padded with blanks to length of 9 characters.

DD Yes Day of month (1-31).

DD Yes Day of year (1-366).

DY Yes Abbreviated name of day.

E No Abbreviated era name (Japanese Imperial, ROC Officia, and Thai Buddha
calendars).

EE No Full eraname (Japanese Imperial, ROC Official, and Thai Buddha calendars).

HH Yes Hour of day (1-12).

HH12 No Hour of day (1-12).

HH24 Yes Hour of day (0-23).

I'W No Week of year (1-52 or 1-53) based on the 1SO standard.

: ¥Y No Last 3, 2, or 1 digit(s) of SO year.

|

68 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

LYYY No 4-digit year based on the | SO standard.

J Yes Julian day; the number of days since January 1, 4712 BC. Number specified
with 'J must be integers.

M Yes Minute (0-59).

W Yes Month (01-12; JAN = 01)

MON Yes Abbreviated name of month.

MONTH | Yes Name of month, padded with blanks to length of 9 characters.

EMM No Meridian indicator with or without periods.

Q No Quarter of year (1, 2, 3, 4, JAN-MAR = 1)

RM Yes Roman numeral month (1-X11; JAN =1).

RR Yes Given ayear with 2 digits, returns ayear in the next century if the year is<50

and the last 2 digits of the current year are >=50; returns a year in the preceding
century if the year is >=50 and the last 2 digits of the current year are <50.

RRRR Yes Round year. Accepts either 4-digit or 2-digit input. If 2-digit, provides the same
return as RR. If you don't want this functionality, smply enter the 4-digit year.

SS Yes Second (0-59).

SSSSS | Yes Seconds past midnight (0-86399).

W No Week of year (1-53) where week 1 starts on the first day of the year and
continues to the seventh day of the year.

W No Week of month (1-5) where week 1 starts on the first day of the month and ends
on the seventh.

Y, YYY Yes Y ear with commain this position.

69 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

YEAR No Y ear, spelled out; "S" prefixes BC dates with "'-".
SYEAR

YYYY Yes 4-digit year; "S" prefixes BC dates with "-".
SYYYY

W Yes Last 3, 2, or 1 digit(s) of year.

Y

Oracle returns an error if an alphanumeric character isfound in the date string where punctuation character isfound in
the format string. For example:

TO CHAR (TO DATE(' 0297',' M YY'), 'MM YY')

returns an error.
Date Format Elements and National Language Support

The functionality of some date format elements depends on the country and language in which you are using Oracle.
For example, these date format elements return spelled values:

MONTH

MON

DAY

DY

BCor AD or B.C. or A.D.
AM or PM or A.M or P.M.

The language in which these values are returned is specified either explicitly with the initialization parameter
NLS DATE_LANGUAGE or implicitly with theinitialization parameter NLS LANGUAGE. The values returned by
the YEAR and SY EAR date format elements are alwaysin English.

The date format element D returns the number of the day of the week (1-7). The day of the week that is numbered 1 is
specified implicitly by the initialization parameter NLS TERRITORY .

For information on these initialization parameters, see Oracle8 Reference.
ISO Standard Date Format Elements
Oracle calculates the values returned by the date format elementsIYYY, IYY, 1Y, |, and IW according to the ISO

standard. For information on the differences between these values and those returned by the date format elements
YYYY,YYY,YY,Y, and WW, seethe discussion of national language support in Oracle8 Reference.

The RR Date Format Element

The RR date format element issimilar to the YY date format element, but it provides additional flexibility for storing
date valuesin other centuries. The RR date format e ement allows you to store 21st century dates in the 20th century
by specifying only the last two digits of the year. It will also alow you to store 20th century dates in the 21st century
in the same way if necessary.

70 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

71 of 86

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

If you usethe TO_DATE function with the YY date format element, the date value returned is always in the current
century. If you use the RR date format el ement instead, the century of the return value varies according to the
specified two-digit year and the last two digits of the current year. Table 3-16 summarizes the behavior of the RR date

format e ement.

Table 3-16 The RR Date Element Format

If the specified two-digit year is

0-49 50 - 99
If the last two digits of the current |0-49 | Thereturn dateisinthe current | Thereturn date isin the preceding
year are; century. century.
50-99 |Thereturn dateisin the next Thereturn date isin the current

century.

century.

The following example demonstrates the behavior of the RR date format element.

Example 1

Assume these queries are issued between 1950 and 1999:

SELECT TO _CHAR(TO DATE(' 27-0OCT-95', 'DD-MON-RR') , ' YYYY')

FROM DUAL,;

Year

1995

SELECT TO _CHAR(TO DATE(' 27-OCT-17', 'DD-MON-RR) , ' YYYY')

FROM DUAL;
Year

2017

Example 2

Assume these queries are issued between 2000 and 2049:

SELECT TO _CHAR(TO DATE(' 27-0OCT-95', 'DD-MON-RR') , ' YYYY')

FROM DUAL,;

Year

1995

SELECT TO _CHAR(TO DATE(' 27-COCT-17', 'DD-MON-RR) , ' YYYY')

FROM DUAL,;

Year

2017

"Year"

"Year";

"Year";

"Year";

Note that the queries return the same values regardless of whether they areissued before or after the year 2000. The
RR date format element allows you to write SQL statements that will return the same values after the turn of the

century.

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

72 of 86

Date Format Element Suffixes
Table 3-17 lists suffixes that can be added to date format elements:

Table 3-17 Date Format Element Suffixes

Suffix Meaning Example Element Example Value
TH Ordina Number DDTH 4TH

SP Spelled Number DDSP FOUR

SPTH or THSP Spelled, ordinal number DDSPTH FOURTH

When you add one of these suffixes to a date format e ement, the return value is alwaysin English.

Note:

Date suffixes are valid only on output and cannot be used to insert adate into the database.

Capitalization of Date Format Elements

Capitalization in a spelled-out word, abbreviation, or Roman numeral follows capitalization in the corresponding
format element. For example, the date format model ‘DAY produces capitalized words like'MONDAY'; 'Day’
produces 'Monday'; and 'day' produces 'monday’.

Punctuation and Character Literals in Date Format Models

Y ou can also include these charactersin a date format mode!:

¢ punctuation such as hyphens, slashes, commas, periods, and colons
e character literals, enclosed in double quotation marks

These characters appear in the return value in the same location as they appear in the format model.
Format Model Modifiers

Y ou can use the FM and FX modifiersin format models for the TO_CHAR function to control blank padding and
exact format checking.

A modifier can appear in aformat modd more than once. In such a case, each subsequent occurrence toggles the

effects of the modifier. Its effects are enabled for the portion of the model following its first occurrence, and then
disabled for the portion following its second, and then reenabled for the portion following its third, and so on.

FM
"Fill mode". This modifier suppresses blank padding in the return value of the TO_CHAR function:
¢ |nadateformat element of aTO_CHAR function, this modifier suppresses blanks in subsequent character

elements (such as MONTH) and suppresses |eading and trailing zeroes for subsequent number elements (such

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

73 of 86

as MI) in adate format model. Without FM, the result of a character element is always right padded with
blanks to afixed length, and leading zeroes are always returned for a number element. With FM, because there
is no blank padding, the length of the return value may vary

¢ |nanumber format element of a TO_CHAR function, this modifier suppresses blanks added to the left of the
number, so that the result is left-justified in the output buffer. Without FM, the result is always right-justified
in the buffer, resulting in blank-padding to the left of the number.

FX

"Format exact". This modifier specifies exact matching for the character argument and date format model of a
TO_DATE function:

¢ Punctuation and quoted text in the character argument must exactly match (except for case) the corresponding
parts of the format model.

¢ The character argument cannot have extra blanks. Without FX, Oracle ignores extra blanks.

¢ Numeric datain the character argument must have the same number of digits as the corresponding element in
the format model. Without FX, numbers in the character argument can omit leading zeroes.

When FX is enabled, you can disable this check for leading zeroes by using the FM modifier aswell.

If any portion of the character argument violates any of these conditions, Oracle returns an error message.
Example 1

The following statement uses a date format model to return a character expression:

SELECT TO_CHAR(SYSDATE, 'fnDDTH)||' of '|| TO CHAR

(SYSDATE, 'Month')||', '|| TO_CHAR(SYSDATE, 'YYYY') "Ides"
FROM DUAL;

3RD of April, 1995

Note that the statement above also uses the FM modifier. If FM is omitted, the month is blank-padded to nine
characters:

SELECT TO CHAR(SYSDATE, 'DDTH)||' of '|]

TO_CHAR(Mont h, YYYY') "ldes"
FROM DUAL,;

O3RD of April , 1995

Example 2

The following statement places a single quotation mark in the return value by using a date format model that includes
two consecutive single quotation marks:

SELECT TO CHAR(SYSDATE, 'fnDay')||'''s Special') "Menu"
FROM DUAL;

Tuesday's Speci al

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Two consecutive single quotation marks can be used for the same purpose within a character literal in aformat model.

Example 3

Table 3-18 shows whether the following statement meets the matching conditions for different values of char and
'fmt' using FX:

UPDATE t abl e
SET date_colum = TO DATE(char, 'fmnt');

Table 3-18 Matching Character Data and Format Models with the FX Format Model Modifier

74 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

75 of 86

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

char ‘fmt’ Match or Error?
"15/ JAN /1993 ' DD- MON- YYYY' Match

" 15! JAN %/ 1993’ ' DD- MON- YYYY' Error

' 15/ JAN 1993’ " FXDD- MON- YYYY' Error

' 15- JAN- 1993' " FXDD- MON- YYYY' Match

"1- JAN- 1993 " FXDD- MON- YYYY' Error

' 01- JAN- 1993' " FXDD- MON- YYYY' Match

"1- JAN- 1993 ' FXFNVDD- MON- YYYY' Match

String-to-Date Conversion Rules

The following additional formatting rules apply when converting string values to date values:

e You can omit punctuation included in the format string from the date string if al the digits of the numerical
format elements, including leading zeros, are specified. In other words, specify 02 and not 2 for two-digit
format elements suchasMM, DD, and Y.

¢ You can omit timefields found at the end of aformat string from the date string.

¢ |f amatch fails between a date format element and the corresponding characters in the date string, Oracle
attempts alternative format elements, as shown in Table 3-19.

Table 3-19 Oracle Format Matching

Original Format Element Additional Format Elements to Try in Place of the Original
Y "MON' and ' MONTH

' MON " MONTH

" MONTH " MON'

'RR ' RRRR

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Expressions

An expression isacombination of one or more values, operators, and SQL functions that evaluate to avalue. An
expression generally assumes the datatype of its components.

This simple expression evaluates to 4 and has datatype NUMBER (the same datatype as its components):

2*2

The following expression is an example of a more complex expression that uses both functions and operators. The
expression adds seven days to the current date, removes the time component from the sum, and converts the result to
CHAR datatype:

TO_CHAR(TRUNC(SYSDATE+7))

Y ou can use expressionsin

the select list of the SELECT command

acondition of the WHERE and HAVING clauses

the CONNECT BY, START WITH, and ORDER BY clauses
the VALUES clause of the INSERT command

the SET clause of the UPDATE command

For example, you could use an expression in place of the quoted string 'smith' in this UPDATE statement SET clause:

SET enane = 'smth';

This SET clause has the expression LOWER(ename) instead of the quoted string 'smith':
SET ename = LOWER(ename);

Expressions have several forms. Oracle does not accept al forms of expressionsin all parts of all SQL commands.
Y ou must use appropriate expression notation whenever expr appears in conditions, SQL functions, or SQL
commands in other parts of this reference. The description of each command in Chapter 4, "Commands", documents
the restrictions on the expressions in the command. The sections that follow describe and provide examples of the
various forms of expressions.

Form |

A Form | expression specifies column, pseudocolumn, constant, sequence number, or NULL.

76 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

77 of 86

In addition to the schema of a user, schema can also be "PUBLIC" (double quotation marks required), in which case it
must qualify a public synonym for atable, view, or snapshot. Qualifying a public synonym with "PUBLIC" is
supported only in data manipulation language (DML) commands, not data definition language (DDL) commands.

The pseudocolumn can be either LEVEL, ROWID, or ROWNUM. Y ou can use a pseudocolumn only with atable,
not with aview or snapshot. NCHAR and NVARCHARZ are not valid pseudocolumn or ROWLABEL datatypes. For
more information on pseudocolumns, see "Pseudocolumns’.

If you are not using Trusted Oracle, the expression ROWLABEL always returns NULL. For information on using
labels and ROWLABEL, see your Trusted Oracle documentation.

Some valid Form | expressions are:

enp. enane
"this is a text string'
10

N this is an NCHAR string'

Form Il

A Form Il expression specifies a host variable with an optional indicator variable. Note that this form of expression
can only appear in embedded SQL statements or SQL statements processed in an Oracle Call Interface (OCI)
program.

eapr fom |l =

O Gy

: H hoat_varabe

Some valid Form Il expressions are:

: enpl oyee_name | NDI CATOR : enpl oyee_nane_i ndi cat or _var
:departnment _| ocati on

Form Il

A Form |11 expression specifiesacall to a SQL function operating on asingle row.

exr_tom Il =

DISTIHET

{:}-
o lwlay

Some valid Form |1l expressions are:

LENGTH(' BLAKE')
ROUND(1234. 567* 43)
SYSDATE

For information on SQL functions, see"SQL Functions'.

Form IV

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

A Form |V expression specifiesacall to auser function

mp o Y o=

Some valid Form |V expressions are:

circle_area(radius)
payrol | .tax_rate(enpno)
scott. payrol .tax_rate(dependents, enpno) @y

For information on user functions, see "User Functions'.

Form V

A Form V expression specifies acombination of other expressions.

ey fom_¥ =

o
m}gtlm
D

Note that some combinations of functions are inappropriate and are rejected. For example, the LENGTH function is
inappropriate within a group function.

Some valid Form V expressions are:

("CLARK' || "SMTH)

LENGTH(' MOCSE') * 57

SQRT(144) + 72

ny_fun(TO _CHAR(sysdat e, ' DD- MMM YY")

=3 Form VI

A Form VI expression specifies acall to atype constructor.

exr_fom_W =

(@Fm)

D L

pe_agumerd sl =

78 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

79 of 86

If type_name is an object type, then the type argument list must be an ordered list of arguments, where the first
argument is a value whose type matches the first attribute of the object type, the second argument is a value whose
type matches the second attribute of the object type, and so on. The total number of arguments to the constructor must
match the total number of attributes of the object type; the maximum number of argumentsis 999.

If type_name isaVARRAY or nested table type, then the argument list can contain zero or more arguments. Zero
arguments imply construction of an empty collection. Otherwise, each argument corresponds to an element value
whose type is the element type of the collection type.

Whether type_name is an object type, aVARRAY, or a nested table type, the maximum number of argumentsit can
contain is 999.

Example

CREATE TYPE address_t AS OBJECT
(no NUMBER, street CHAR(31), city CHAR(21), state CHAR(3), zip NUMBER);
CREATE TYPE address_book t AS TABLE OF address_t;
DECLARE
/* Object Type variable initialized via Object Type Constructor */
nyaddr address_t = address_t (500, 'Oracle Parkway', 'Redwood Shores',
"CA', 94065);
/* nested table variable initialized to an enpty table via a
constructor*/
al addr address_book_t = address_book_t();
BEG N
/* below is an exanple of a nested table constructor with two el enents
speci fied, where each elenent is specified as an object type
constructor. */
insert into enpl oyee val ues (666999, address_book_t (address_t (500,
"Oracle Parkway', 'Redwood Shores', 'CA, 94065), address_t (400,

"Mssion Street', 'Frenmont', 'CA, 94555)));
END;
=3 Form VII

A Form V11 expression converts one collection-typed value into another collection-typed value.

© %] 0
operad =
RC,
mbguery
Fal
1
= .
(=)
|,-4 OFCER BY prsibon
{c.dns) l
“{ mimsET @{mmewj {E}

CAST allows you to convert collection-typed values of one type into another collection type. Y ou can cast an
unnamed collection (such as the result set of a subquery) or anamed collection (such asaVARRAY or anested table)
into a type-compatible named collection. The type_name must be the name of a collection type and the operand must
evaluate to a collection value.

To cast anamed collection type into another named collection type, the e ements of both collections must be of the
same type.

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

80 of 86

If the result set of subquery can evaluate to multiple rows, you must specify the MULTISET keyword. The rows
resulting from the subquery form the el ements of the collection value into which they are cast. Without the
MULTISET keyword, the subquery istreated as a scalar subquery, which is not supported in the CAST expression. In
other words, scalar subqueries as arguments of the CAST operator are not valid in Oracle8.

The CAST examples that follow use the following user-defined types and tables:

CREATE TYPE address_t AS OBJECT

(no NUMBER, street CHAR(31), city CHAR(21), state CHAR(2));
CREATE TYPE address_book t AS TABLE OF address_t;
CREATE TYPE address_array_t AS VARRAY(3) OF address_t;
CREATE TABLE enp_address (enpno NUMBER, no NUMBER, street CHAR(31),

city CHAR(21), state CHAR(2));

CREATE TABLE enpl oyees (enpno NUMBER, nanme CHAR(31));
CREATE TABLE dept (dno NUMBER, addresses address_array_t);

Example 1
CAST asubquery:

SELECT e. enpno, e.nane, CAST(MJLTI SET(SELECT ea. no, ea.street,
ea.city, ea.state
FROM enp_address ea
WHERE ea. empno = e. enpno)
AS address_book_t)
FROM enpl oyees e;

Example 2

CAST convertsaVARRAY type column into anested table. The table values are generated by aflattened subquery.
See "Using Flattened Subqueries'.

SELECT *
FROM THE(SELECT CAST(d. addresses AS address_book_t)
FROM dept d
WHERE d.dno = 111) a
WHERE a.city = 'Redwood Shores';

Example 3
The following example castsaMULTISET expression with an ORDER BY clause:
CREATE TABLE projects (enmpid NUMBER, projnane VARCHAR2(10));
CREATE TABLE enpl oyees (enpid NUMBER, enane VARCHAR2(10));
CREATE TYPE projname_t able_type AS TABLE OF VARCHAR2(10);
An example of aMULTISET expression with the above schemais:
SELECT e. nanme, CAST(MULTI SET(SELECT p. pr oj nane
FROM projects p
WHERE p. enpi d=e. enpi d
ORDER BY p. proj nane)
AS projname_t abl e_type)
FROM enpl oyees e;
=3 Form VIII

A Form VIII expression returns a nested CURSOR. This form of expression is similar to the PL/SQL REF cursor.

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

81 of 86

exr_fom_MIl = G
[5 |
= [=5 |
CRDER. BY peeiion)
J (cda:) l
O D

A nested cursor isimplicitly opened when the containing row is fetched from the parent cursor. The nested cursor is
closed only when

explicitly closed by the user

the parent cursor is reexecuted

the parent cursor is closed

the parent cursor is cancelled

an error arises during fetch on one of its parent cursors (it is closed as part of the clean-up)

The following restrictions apply to the CURSOR expression:

e Nested cursors can appear only in a SELECT statement that is not nested in any other query expression, except
when it isasubquery of the CURSOR expression itsdlf.

¢ Nested cursors can appear only in the outermost SELECT list of the query specification.

¢ Nested cursors cannot appear in views.

¢ You cannot perform BIND and EXECUTE operations on nested cursors.

Example

SELECT d. dept no, CURSOR(SELECT e. enmpno, CURSOR(SELECT p. proj num
p. proj nane
FROM projects p
WHERE p. enpno = e. enpno)
FROM TABLE(d. enpl oyees) e)
FROM dept d
VWHERE d. dno = 605;

=3 Form IX

A Form | X expression constructs a reference to an object.

o dom X =

wof FEF I-{D-;thﬁm_\laial:lej-@«

In a SQL statement, REF takes as its argument atable aias associated with arow of an object table or an object view.
A REF valueisreturned for the object instance that is bound to the variable or row. For more information about
REFs, see Oracle8 Concepts.

Example 1

SELECT REF(e)
FROM enmpl oyee_t e
VWHERE e. enrpno = 10000;

Example 2

This example uses REF in a predicate:

2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

SELECT e. nane
FROM enpl oyee_t
e INTO : x
WHERE REF(e) = enprefl;

=¥ Form X

A Form X expression returns the row object.

exr_fom_X =

= VALE @»Lmhh_wﬁﬂe}@«

Ina SQL statement, VALUE takes asits argument a correlation variable (table alias) associated with arow of an
object table.

Example

SELECT VALUE(e)
FROM enpl oyee e
VWHERE e. nane = 'John Smth';

=3 Form Xl

A Form X| expression specifies attribute reference and method invocation.

expr_form Xl::=

The col unm parameter can be an object or REF column. Examples in this section use the following user-defined
types and tables:

CREATE OR REPLACE TYPE enpl oyee_t AS OBJECT
(enpi d NUMBER,
nanme CHAR(31),
bi rt hdat e DATE,
MEMBER FUNCTI ON age RETURN NUMBER,
PRAGVA RESTRI CT REFERENCES(age, RNPS, WAPS, WNDS)

)
CREATE OR REPLACE TYPE BODY enpl oyee_t AS
MEMBER FUNCTI ON age RETURN NUMBER | S
var NUMBER;
BEG N
var : = nmont hs_bet ween(ROUND(SYSDATE, ' YEAR),
ROUND(bi rt hdate, ' YEAR))/12;
RETURN(var) ;
END;
END; /
CREATE TABLE departnment (dno NUMBER, manager EMPLOYEE T);

Examples

The following examples update and select from the object columns and method defined above.

82 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

UPDATE departnent d
SET d. manager.enpid = 100;

SELECT d. manager. name, d. nanager. age()
FROM depart ment d;

Decoded Expression

A decoded expression uses the special DECODE syntax:

desode_mpr o=
puy g o8
| DECoE W w mpe o b smarch "l et) 1)

To evaluate this expression, Oracle compares expr to each search value one by one. If expr isequal to asearch,
Oracle returns the corresponding result. If no match isfound, Oracle returns default, or, if default is omitted, returns
null. If expr and search contain character data, Oracle compares them using honpadded comparison semantics. For
information on these semantics, see the section" Datatype Comparison Rules'.

Thesearch, result, and default values can be derived from expressions. Oracle evaluates each search value only
before comparing it to expr, rather than evaluating all search values before comparing any of them with expr.
Consequently, Oracle never evaluates asearch if aprevious search isequal to expr.

Oracle automatically converts expr and each search value to the datatype of the first search value before comparing.
Oracle automatically converts the return value to the same datatype as the first result. If the first result hasthe
datatype CHAR or if the first result is null, then Oracle converts the return value to the datatype VARCHAR2. For
information on datatype conversion, see "Data Conversion”.

In a DECODE expression, Oracle considers two nulls to be equivalent. If expr isnull, Oracle returns the result of the
first search that isalso null.

The maximum number of components in the DECODE expression, including expr, searches, results, and default is
255,

Example

This expression decodes the value DEPTNO. If DEPTNO is 10, the expression evaluates to 'ACCOUNTING'; if
DEPTNO is 20, it evaluatesto 'RESEARCH'; etc. If DEPTNO is not 10, 20, 30, or 40, the expression returns

'NONE.
DECODE (dept no, 10, ' ACCOUNTI NG ,
20, ' RESEARCH ,
30, 'SALES',
40, ' OPERATI ON ,
" NONE')

List of Expressions

A list of expressionsis a parenthesized series of expressions separated by a comma.

mprlisl :=

EJ

83 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

An expression list can contain up to 1000 expressions. Some valid expression lists are:

10, 20, 40)
(' SCOTT', 'BLAKE', ' TAYLOR)
(LENGTH(' MOOSE') * 57, -SQRT(144) + 72, 69)

Conditions

A condition specifies a combination of one or more expressions and logical operators that evaluates to either TRUE,
FALSE, or unknown. Y ou must use this syntax whenever condition appearsin SQL commands in Chapter 4,
"Commands".

Y ou can use a condition in the WHERE clause of these statements:

e DELETE
e SELECT
e UPDATE

Y ou can use acondition in any of these clauses of the SELECT command:

WHERE
START WITH
CONNECT BY
HAVING

A condition could be said to be of the "logical" datatype, although Oracle does not formally support such a datatype.

The following simple condition always evaluates to TRUE:

1 =1

The following more complex condition adds the SAL value to the COMM value (substituting the value 0 for null) and
determines whether the sum is greater than the number constant 2500:

NVL(sal, 0) + NvVL(comm 0) > 2500

Logical operators can combine multiple conditions into a single condition. For example, you can use the AND
operator to combine two conditions:

(1 =1) AND (5 < 7)

Here are some valid conditions:

nane = 'SM TH

enp. dept no = dept. deptno

hi redate > ' 01- JAN- 88'

job IN (' PRESI DENT', 'CLERK', 'ANALYST')
sal BETWEEN 500 AND 1000

comm IS NULL AND sal = 2000

Conditions can have several forms. The description of each command in Chapter 4, "Commands', documents the
restrictions on the conditions in the command. The sections that follow describe the various forms of conditions.

84 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

Form |

A Form | condition specifies a comparison with expressions or subquery results.

sodlion_fam | =

For information on comparison operators, see "Comparison Operators”.

Form Il

A Form Il condition specifies a comparison with any or all membersin alist or subquery.
sordfon fom_ll =

See "Subqueries'.
Form Il

A Form |11 condition tests for membership in alist or subquery.

sodfon_tom Il o=

85 of 86 2/2/00 11:36 AM

Operators, Functions, Expressions, Conditions

86 of 86

A Form IV condition tests for inclusion in arange.

o fon_tom_I¥ =

@ N @

Form V

A Form V condition tests for nulls.
sodfon fom_¥ =

o E .—l HULL

Form VI

A Form VI condition tests for existence of rows in a subquery.

cordfion_fom_W =

BRI TE | 1 sbauery 1)
Form VIl

A Form VI condition specifies atest involving pattern matching.

sodfon_fom_ Wl =

ESCHE
Ll DN 21,0, L2,

Form VIl

A Form V111 condition specifies a combination of other conditions.

codfon fom ¥l =

file:/Cl/orawin95/doc/database.804/a58225/ch3all.htm

ORACLE
* , Copyright © 1997 Oracle Corporation.
Prev Next All Rights Reserved.

BHeesm

Library Product Contents Index

2/2/00 11:36 AM

