CHAPTER 6

Program Structure
Design

T he next software design process is the design
of the program structure, which includes the
definition of all modules in the program, the
hierarchical structure of the modules, and the
interfaces among the modules. If the product
being designed is a single program, the input Lo
this process is the detailed external specifica-
tion. If the product is a system, the input is the
detailed external specification and the system
architecture, and this process is the structural
design of all components or subsystems in the
system.

The tradilional method of managing com-
plexity is the idea of “divide and rule,” often
called “modularization.” However, in practice
this idea has often been ineffective in reducing
complexity. Liskov [1] has pointed out three
reasons [or this failure:

1. Modules are made to do too many related
but different funetions, obscuring their
logic.

9 Common funclions are not identified in the
design, resulting in their distribution (and
varied implementation) among many dif-
ferent modules,

3. Modules interact on shared or common
data in unexpected ways,

BB

MODULE STRENGTH 89

A design methodology called composite design [2] is the design prin-
ciple discussed here for program structure design. Composite design
actually consists of two sets of principles: a set of explicit design
measures that solve the three problems listed above plus many addi-
tional problems, and a set of thought processes for decomposing a
program into a set of modules, module interfaces, and module rela-
tionships. Compasite design leads to a program structure of minimal
complexity, which has proven to increase reliability, maintainability,
and adaptability.

MODULE INDEPENDENCE

The primary way to make a program less complex is to decompose it -

into a large set of small, highly independent modules. A module is a
closed subroutine that can be called from any other module in the
program and can be separately compiled (note that this excludes the
PL/1 internal procedure and the COBOL “performed"” paragraph).
High independence can be achieved by two optimization methods:
maximizing the relationships within each module and minim‘zing the
relationships among modules. Given that a program will eventually
consist of a set of program statements where the statements will have
some relationships among themselves (both in terms of function
performed and data manipulated), what is needed is the foresight to
organize these statements into separate boxes (modules) such that the
statements within any module are closely related and any pair of state-
ments in two different modules are minimally related. The goals are to
isolate a single function to each module (high module strength) and to
minimize the data relationships among modules by using formal
parameter-passing methods (loose module coupling).

MODULE STRENGTH

Module strength is a measure of the relationships within a’module.

Determining the strength of a module invelves analyzing the function or £]

functions performed by the module and then fitting the module into one

of seven categories. The categories were established partially to :

guantify the “goodness” of particular types of modules.
Before proceeding it is necessary to define what is meant by the
function of a module. A module has three basic attributes: it performs

: ;';--r:?/.’a.%

e

80 PROGRAM STRUCTURE DESIGN

one or more functions, it contains some logic, and it is used in one or
more contexts. Function is an external description of the module; it
describes what the module does when it is called, but not how it does it.
Logic describes the internal algorithm of the module, in other words,
how it performs its function. Context describes a particular usage of a
module. For instance, a module with the function “squeeze the hlanks
from a character string” might be used in the context “compress
teleprocessing message.” To see the difference between function and
logic, consider a module with the function: compile a PL/1 program,
This module may be the top module in an f3-module compiler or it
may be the only module in the compiler. In either case its function
remaine the same but its logic is much different. Therelore, the function
of a module can be viewed as the summation of the module’s logic plus
the functions of all subordinate (called) modules. This definition is
recursive and applies to any module in a hierarchy.

The design goal is to define modules such that each module
performs one function (such modules are said to have functional
strength). To understand the need for this goal, the scale for the seven
categories of module strength is explored as follows, starting with the
weakest type of strength.

A coincidental-strength module is a module in which there are no
meaningful relationships among its elements. It is difficult to give an
example of such a module since it performs no meaningiul function.
The only way to describe the module is by desc ribing its logic. One way
a module of this type might oceur is in an after-the-fact “modulariza-
tion” of a program, where we discover identical sequences of code in
several modules and decide to group these together into a single module.
If these code sequences (although appearing to be identical} have dif-
ferent meanings in the modules in which they originally appeared, this
new module has coincidental strength. A module of this sort is closely
related to its calling modules, implying that almost any modification of
the module on behalf of one of its callers will cause it to operate incor-
rectly for its other callers.

A logical-strength module is a module that, during each invocation,
performs one selected function from a class of related functions. The
selected function is explicitly requested by the calling module, for
instance by the use of a function code. An example is a mudule whose
function is to read or write a record to/from a file. The main problem
with this type of module is the use of a single interface to reflect
multiple functions. This leads to complex interfaces and unexpected
errors in instances where the interface is modified to reflect a change in
one of the functions.

MODULE STRENGTH 91

A classical -strength module is a module that sequentially performs a
class of related functions. The most common examples are “initializa-
tion” and “termination” modules. The major problem with modules of
this type is that they usually have implicit relationships with other
modules in the program, making the program difficult to understand
and leading to errors when the program must be modified.

A procedural-strength module is a module that sequentially
performs a class of related functions, where the functions are related in
terms of the procedure of the problem. The “problem™ is the reason for
writing the program. An example of a problem is: write a program to
regulate the temperature of the primary boiler. Problems to a certain
extent dictate the procedure of the program. For instance, the problem
might state that upon receiving signal x, valve y should be turned off
and the temperature should be read and logged. A module whose fune-
tion is “turn off valve y, read boiler temperature and record it on
journal” has procedural strength. The only reliability problem is that
the code for the set of functions may be intertwined. Note that this type
of module, in common with most other types, has other non-reliability-
related problems, as shown by Myers [2].

A communicational-strength module is a module with procedural
strength but with one additional relationship: all of its functions are
related in terms of data usapge. For instance, the module “read next
transaction and update master file” has communicational strength
since both functions are related by their use of the transaction. Again,
the functions may tend to be intertwined, but the risk of making a mis-
take while performing a modification is somewhat less since the fune-
tions are more closely related.

Informational strength is next on the scale. However, 1 defer dis-
cussion of it for a moment.

A functional-strength module is a module that performs a single
specific function such as “turn off valve ¥,” “execute EDIT command,”
or “summarize the week's transactions.” Functional strength is the
highest (best) form of module strength.

Note that a functional-strength module could also be described as a
set of more-detailed functions. For instance, a “summarize transaction
tape” module could have been described as “initialize summary table,
open transaction file, read records, and update summary table.” The
reader may look at this and have the feeling that by just rewording the
module’s description its strength has been lowered. The resolution is
that if these “lower functions’ can rationally be described as a single
“higher” well-defined function, the module has functional strength.

The remaining type of strength is informational strength. An

" |.
& .-.ﬂr1hq.3§‘P:-

i

AR s i i BB R o -

SR -

92 PROGRAM STRUCTURE DESIGN

informational-strength module is a module that performs several func-
tions, where the functions operate on the same data structure and each
function is represented by a unique entry point. A module with two
entry points, one having the function “insert entry into symbol table”

and the other having the function “search symbol table,” has informa-

" tional strength. This type of module can be viewed as the physical

grouping of certain unctional-strength modules to achieve “information
hiding” [3], such as hiding all knowledge of a particular data structure,
resource, or device to within a single module. In the example men-
tioned, all knowledge of the symbol table structure and location are hid-
den within one module. The advantage in this is that whenever some
aspect of the program can be hidden within a single module, the inde-
pendence among the program’s modules increases. The design goal
mentioned earlier is now modified to include informational-strength
modules, as well as functional-strength modules, as the goal.

Although the preceding discussion focuszed only on the relationship
between module strength and susceptibility to errors, module strength
also affects the adaptability of the program, the difficulty of testing
individual modules, and the degree to which a module is usable in other
contexts and other programs [2]. The strength scale was ordered by
weighing all of these attributes.

Note that a module may fit the descriptions of several types of
strength. For instance, a communicational-strength module also fits the
definition of procedural and classical strength. A module is always
classified as having the highest strength whose definition it meets.

“*MODULE COUPLING

The second primary way to maximize module independence is by
minimizing the connections among modules. Module coupling, a
measure of the data relationships among modules, is concerned with
both the mechanism used to pass data and the attributes of the data
itself. Every pair of modules in a program can be analyzed and fit into
either one of six categories of coupling or elze be categorized as having
no direct coupling.

The design goal is to define module interfaces so that all data passed
between modules is in the form of explicit simple parameters. Again, to
understand the importance of this goal, the six categories of coupling
are explored below, starting with the tightest form of coupling (the
worst case).

Two modules are content coupled if one directly references the

MODULE COUPLING 83

contents of the other. For instance, if module A somehow references
data in module B by using an absclute displacement, the modules are
content coupled. Almost any change to B, or maybe just recompiling B
with a different version of the compiler, will introduce an error into the
program. Fortunately, most high-level languages make content coupling
difficult to achieve.

A group of modules are common coupled if they reference the same
global data structure. A set of PL/1 modules that reference a data
structure declared as EXTERNAL are common coupled to one another.
FORTRAN modules referencing data in a COMMON area and groups
of modules referencing a data structure in an absolute storage location
(including registers) are also examples of common coupling.

There are a large number of problems associated with common cou-
pling. ‘All of the modules are dependent on the physical ordering of the
items within the structure, implying that a change to the size of one
data item affects all of the modules. Use of global data defeats attempts
to control the access that each module has to data. For example, IBM's
0S/360 has a large global data structure called the communications
vector table. The inability to control access to this table (and other
global tables) has led to a number of reliability and adaptability prob-
lems. Global variable names bind modules together when they are origi-
nally coded. This means that the reuse of commeon-coupled modules in
future programs is difficult if not impossible.

The use of global data also reduces a program’s readability.
Consider the following piece of a program:

DO WHILE (A);
CALL L (XY.Z);
CALL M (XY}
CALL N (W.Z);
CALL P (ZXY);

EMD;

If A is not a global variable and if other bad coding practices are
avoided (such as overlaying A and W, X, Y, or Z), we can state that the

loop cannot terminate. If A is a global variable, we cannot immediately

determine if the loop can terminate. We have to explore the insides of
modules L, M, N, and P, and also the insides of all modules called by
these four modules, to understand the DO loop!

The case against global data is becoming as important as the case f

against the GO TO statement and is beginning to receive attention in
the professional literature [4, 5, 6].

.

. 'nl;:___-;-

94 PROGRAM STRUCTURE DESIGN

A group of modules are external coupled if they reference the same
global data item (single-field variable). For instance, a set of PL/I
modules referencing a variable (not a structure) declared as
EXTERNAL are external coupled with one another. External coupling

3 - has many of the problems associated with commaon coupling. However,

the problem of dependence on the physical ordering of items within a

" structure is not present in external coupling.

Two modules are control coupled if one explicitly controls the func-
tions of the other, for instance by the use of a function code. Control
coupling and logical strength usually occur together; thus the major
problem here is the same one as associated with logical strength: the use
of a single complex interface to reflect one of many functions. Control
coupling also often implies that the calling module has some knowledge
of the logic of the called module, thus lessening their independence.

A group of modules are stamp coupled if they reference the same
nonglobal data structure. If module A calls module B passing B an
- employee personnel record and both A and B are sensitive to the struc-
ture or format of the record, then A and B are stamp coupled,

Stamp coupling should be avoided where possible because it creafes
unnecessary connections between modules. Suppose module B only

" needs a few fields in the personnel record. By passing it the entire

- record, B is forced to be aware of the entire structure of the record and
* the chances of module B's inadvertently modifying the record are
increased. (It seems fair to say that the more extraneous data to which
a module is exposed, the greater the opportunity for error.)

Stamp coupling can often he eliminated by isolating all functions
performed on a particular data structure to an informational-strength
. module. Other modules may need to name the structure, but they know
“only its name (address), not its format. This technigue is illustrated

later in this chapter.

Two modules are data coupled if one calls the other and all inputs
to, and outputs from, the called module are data item parameters (not
structures). Suppose in the example above that module B's funection is
to print an envelope for an employee. Rather than giving B the person-
nel record, we could pass it the employee's name, street, apartment,
city, state, and zip code as arguments. Module B is now not dependent
on the personnel record. A and B are more independent and the
probability of an error in B is lower since the programmer of B has less
data to deal with.

As was the case for module strength, module coupling alfects other
attributes that have not been discussed, such as adaptability, the diffi-

FURTHER GUIDELINES 95

culty of testing modules, the reusability of modules, and the ease or dif-
ficulty of multiprogramming [2].

A pair of modules can fit the definition of several types of coupling.
For instance, two modules could be both stamp coupled and external
coupled. When this occurs the modules are defined to have the tightest
l:!;mrsl} type of coupling that they exhibit (in this case external cou-
pling).

The measures of strength and coupling can be used to evaluate an
existing design or as guidelines in producing a design for a new program.
They should not imply, however, that a design with instances of
strengths and couplings below the ideal is necessarily a poor design. The
strength and coupling measures are guidelines. A designer may decide,
based on some tradeoff, to define a logical-strength module. However,
when he does this, he should be able objectively to explain his reasons
and also to realize the implications of his tradeoff. This is certainly bet-
ter than going about the business of design in an intuitive and hap-
hazard manner,

High module strength and low coupling contribute to module inde-
pendence by minimizing the interactions and assumptions among
modules. The following three design criteria defined by Holt [7] present
a good summary of these effects:

1. The complexity of a module’s interactions with other modules
should be less than the complexity of the module's internal struc-
ture.

A good module is simpler on the outside than on the inside.

A good module is easier to use than to build.

w 19

FURTHER GUIDELINES

In addition to strength and coupling, there are other guidelines that
have an effect on module independence. These guidelines are sum- °
marized as follows.

Module Size. Module size has a bearing on a program’s independence,
readability, and difficulty of testing (e.g., number of paths). One could -
satisfy the criteria of high strength and minimal module coupling by
designing a program as one huge module, but it is unlikely that high
independence would be achieved by doing so. The use of a large number
of modules is desirable, for modules represent explicit barriers within -

=,

A
N S
o

8 PROGRAM STRUCTURE DESIGN

the program, thus reducing the potential number of interconnections
among program statements and data. As a general rule, modules should
_contain between 10 and 100 executable high-level language statements.

r‘iﬁr " Predictable Modules. A predictable module is a module whose func-
. .'{Il

tion is independent of its past history of use. A module that intemf\lly
keeps track of its own state across invocations (e.g., setting a “first-time

“'ﬁ -
- switch”) is unpredictable. All modules should be predictable, that is,

they should have no “memory" from one invocation (call) to another.
Interesting elusive time-dependent errors occur in programs that
attempt to call an unpredictable module from several places in the

program.
Decision Structure. Whenever possible it is desirable to arrange
modules and decisions in those modules so that modules that are

 directly affected by a decision are subordinate to (called by) the module

" containing the decision. This tends to eliminate the passing of s[‘:q-::ial
parameters representing decisions to be made and also keeps decisions
affecting program control at a high level in the program hierarchy.

Minimized Data Access. The amount of data that each module can

.*h'f_-..‘."_ret'erence should be minimized. Avoiding common, external, and stamp

~ coupling is a big step in this direction. The designer should try to isolate
~ knowledge of any particular data structure or data base record to a
' single module (or a small subset of modules), possibly by using
informational-strength modules. The global data problem should not he
solved by passing a single huge parameter list to all modules. Following
these rules will minimize the scope of data access that each module has,
. , reducing the consequences of errors and making errors easier to isolate,

Internal Procedures. An internal procedure or subroutine is a closed
subroutine that physically resides in its calling module. Internal
procedures should he avoided for several reasons. Internal procedures
are difficult to isolate for testing (unit testing), and they cannot be
¢alled from modules other than the modules physically containing the
procedures. This violates the objective of “reusability.” Of course, an
alternative is to insert copies of an internal procedure into all modules
needing it. However, this often leads to errors (copies of the same
procedure often become “nonexact copies’”) and complicates program
maintenance (when the procedure is changed all modules using it must
be recompiled). Lastly, unless a great deal of discipline is used during
the coding process, internal procedures will have poor degrees of cou-
pling with their calling modules. If a need for an internal procedure
arises, the designer should consider making it a module.

COMPOSITE ANALYSIS @7

COMPOSITE ANALYSIS

Module strength, coupling, and the other guidelines discussed are
valuahle in evaluating alternatives in a design but they do not explicitly
identify the design thought process. Within composite design is a
process called composite analysis, a top-down design reasoning process,
Composite analysis involves an analysis of the problem structure and
how data is transformed as it flows through the problem structure. This
information is used to decompose the problem into a “layer” of
modules. Each module is then viewed as a subproblem, the analysis is
repeated for this subproblem, and so on.

In using composite analysiz there are three basic decomposition
strategies. In decompoging any subproblem, one of the following
strategies is used. 8TS (source/transform/sink) decomposition involves
breaking the problem into functions that acquire data, alter its form,
and then deliver the data to some point outside of the problem,
Transaction decomposition involves breaking the problem into “sister”
functions that process unique tvpes of transactions. Functional decom-

position involves breaking the problem into functions that perform data *

transformations. STS decomposition is normally used to decompose the
problem initially into the first layer of modules, and then either STS,
transaction, or functional decomposition is used on each subproblem,
the one used being dependent on characteristics of the subproblem.

Transaction and functional decomposition are baszically intuitive
processes and little more can be said about them. STS decompaosition,
however, iz a more sophisticated process and can be summarized in
these live steps:

1. Outline the structure of the problem, picturing it as three to ten
processes based on data flow through the problem,

2. Identify the major input stream of data entering the problem and
the major output data stream leaving the problem.

4. Trace the major input data stream through the problem structure,
As you do this you will notice two effects: the input data stream will

change form, becoming more abstract as you follow it into the prob-

lem structure, and you will eventually hit a point where the input
stream seems to disappear. The point at which the input stream last
appears is called the point of highest abstraction of the input
stream.

Perform a similar analysis of the output data stream, starting at
the “end” of the problem structure and working backward. Identify

--
S

g8 PROGRAM STRUCTURE DESIGN

the point at which the output stream first appears in its most

abstract form. o _
These points are of interest because they divide the problem into

its most independent pieces.

%2 4 The two points identified break the problem structure into pieces

(normally three). Describe these pieces of the problem structure as
functions and define modules {again, normally three) that p-erllhrm
each of these functions. These modules become subordinate
modules to the module being decomposed.

Define the interfaces to these modules. At this time you s:huuld be
interested only in identifying the kind of data in each mle_ri'a-::e.
That is, identify descriptive input and output ﬂrg‘l.ll‘ﬂt‘.'rrlts without
being concerned about their precise nature (order, attributes, and
representation). A subsequent design process {m_udule exlzernal
design, described in Chapter 8) will define the detail of each inter-

face.

The decomposition process is continued down the moduIF hierarchy,
until a stopping point is reached. The general guit_ialine l.eIIT_g wll1?n to
stop is whenever a module is reached whose logic seems “intuitively
"~ ohvious” (meaning it probably will contain 50 statements or Iess},.

The output of the analysis process is a hierarchical block diagram
- showing the structural relationships of all modules {who calls wham),
" the functions of each module, and the interfaces among the modules.

"~ Notation for this diagram is described in Myers [2].

?."achFDSTTE ANALYSIS EXAMPLE

;ﬁ The easiest way to understand commsit&l Hﬂﬂl}".{iﬁ is to sep its
‘a“-r, application on an example. This same example is used in later chapters
0 4 illustrate other design and testing processes. _
=t In deciding on an appropriate example I immediately ran into
. several problems. The example cannot be a large program; it must be
' textbook size, yet it also must not be trivial. An application program
" (e.g., a payroll program) might not hold the interest of system program-

mers and even many application programmers; a component of an
operating system would have an equally limited appeal. To compromise
I chose a loader, a program that is midway between an apphc.atmn
~ program and an operaling system. A second reason I'n_r gelecting a
loader as an example is my feeling that most readers will be at least
vaguely familiar with the function of a loader.

COMPOSITE ANALYSIS EXAMPLE 98

As mentioned at the beginning of the chapter, a detailed external
specification is the input to the program structure design process,
Rather than supply such a specification for the loader, T simply
describe the functions of the loader and its inputs and outputs in suffi-
cient detail to allow us to design its structure.

The function of the loader is to load a program into main storage,
ready for execution (some loaders also initiate the execution of the
program, but this detail is disregarded here). The input to the loader is
a file (referred to as INFILE) containing one or more ohject modules
produced by a compiler. The loader can have a second input: a program
library file (referred to as PROGLIB) containing a large library of
ohject modules that may be needed in the loaded program. The loader
has two outputs: the loaded program in main storage and an output file
irefefred to as OUTFILE) containing a memory map showing the main
storage locations of the modules in the loaded program, and a list of
error messages, if any.

INFILE is a sequential file containing one or more object modules.
PROGLIB is some type of indexed or partitioned file where object
modules are stored as separate entitiez. All object modules have the
same format; one or more ESD {external symbaol dictionary) records
describing external symbols and external references in the module, two
or more TXT (text) records containing the object (machine) code for
the module, followed by zero or more RLD (relocation dietionary)
records describing any address constants in the module, and an END
record. Each ESD record contains a symbaol name, the type of symbol
imodule name, entry-point name, or reference to an external name),
and the relative offset of the symbol within the module. The first TXT
record contains the size of the object code for the module. Each follow-
ing TXT record contains a section of the object code along with a length
field describing the amount of ohject code on this record. The RLD
records describe any address constants within the module, addresses
that must be relocated when the module is assigned a particular main
storage address. An RLD record contains the offset of an address
constant in the object code and the number of the corresponding ESD
record (each address in an ohject module is relative to an external
symbol). For address constants that will point to areas within the
module, the corresponding ESD record is the ESD for the module name
{primary entry point). For address constants that will peint to other
modules, the corresponding ESD record is the ESD for the external
reference to the other module.

To load a program, the loader has to perform the following fune-
tions:

EE——

. 10 PROGRAM STRUCTURE DESIGN

“ 1. Move the object code for each module in INFILE into assigned
5 main storage locations.

9. Ensure that all external references are matched. For example, if
= module A is being loaded and it contains a CALL statement to
~ module B, the loader must ensure that module B is also loaded. If
T4 module B is not in INFILE, it is loaded from PROGLIB if it is
s found there. Note that module B may then contain external
- references to other modules that must subsequently be matched.
3. Relocate all address constants. An address constant is a data area
s in a program that contains the address of another data area. We
will assume that all address constants have a single fixed length.
The compiler has no knowledge of what main storage locations the
program will be loaded into, so the compiler puts relative addresses
in the address constant fields. For an address constant pointing to a
location within the same module, the compiler assigns it the offset
of the location relative to the beginning of the module. Address
constants pointing to external references are initialized to zero by
the compiler. Once all necessary maodules have been assigned main
storage locations, the loader adjusts all address constants to their

B - proper values.

- Rather than explain this process in any more detail, 1 have
described a sample input to the loader in Figure 6.1 and the resulting
5 4 output in Figure 6.2. By studying Figures 6.1 and 6.2 you should be able
 to gather enough information to understand the design problem. In
- designing the loader, we assume that it executes on some operating
 system containing main storage allocation functions and the necessary
" ‘input/output functions to perform read, write, and search operations on
; 'ﬂ the'input and output files.
o The first step in designing the loader is to define a top module
~ having a function equivalent to the loader. This module is called
* LOAD-A-PROGRAM. The next step is to view this module as a prob-
~ lem to be solved and use 8TS decomposition to break it into smaller
" functions. Figure 6.3 shows that this problem can be structured by data
- flow into five processes. The major input stream is the stream of abject
* modules. The major output stream is the loaded program (the memory
" map is a secondary output). By recognizing that an object module is a
~ module with relative address constants and that a loaded program is a
. sot of modules with absolute address constants, the points of highest
" abstraction are easily found and are indicated by asterisks. The prob-
" lem has now been decomposed into three functions and the module
. structure is started as shown in Figure 6.3,

OFFSET

(.'{!Mmﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ%&&&ﬁmé

Source program (ot al | rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr-‘

Q| FROC W
.

1] CALL C
-

"
100 ENTRY B

L]
2000 ¥ DCL ADDR (¥}

L]
L

22| % DCL e & &

0| PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

an

&0

INFILE Conienis

ESD M MO m&mmmmmmmmmﬁmm

ESD B EP ORI RN B RN NN R BB N VNN R E N E RN E R NN NERE RN
ESD c ER DO DD DCOE DD OO OO0 OO0 OO DD,

THT [k [0 6 T T e [0 T o T 0 e o o I'aﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁé

Figure 61 Sample bhLLEEEEEEEEEREEEEEE BB E LB L L

The remaining item to be defined ssspsspaspapsopaapappopaapapEaBAR
module interfaces (the ones marked 1, 22222222222222222222222222222222222
31 we know that {hE output Iisting CONSS555.655 856556865855 566555655565556555%8
external symbols and their absolute adddddddddddddddddddddddddddddddddddd
input on interface 3 is now defined 6033333333333 3 3333333333333 3333331131)
ESTAB, a table containing external s56S5666 6565565665555 S555555555658¢8
absolute addresses. MNote that we are noOOOOOOOOOOOOOOOO0O000000000000000
data representations during the progrannnRRARRRAARRRARARAAAAAAARAAARRAARL
ESTAB eould later be defined as a seqquuqqqyyqquy9qqy9qq9999999999999999

output on interface 3 is some yel-10- e -0-0-0-0-C-0-C-0-C-0-C-0- 00~ 00~ 00~ (-0~ (-0 (-0 (- O (- L (- L (- L (- -

LOCATION TYFE

100000 MoD
100100 EP
100300 MOD

L CC e CC oot ooocoooooiocoococccage ﬂ'l.l'tF'U"

CEECCCLCroOEEeEeereeeeccccccoacecceccccecontain code for module M

!HllIIillIIillIIillHillHillHillHilt!Ean'ﬂin! Imﬁm
GO e e f s gontaing 100220

.. contain code for module C

. contains 100100

$3833ERIFIIRERIIREEIARRRIIRRRFIARRFIRsssponding loader oulpul.

MEAAREAAAREAAARLAAARLAAR R A AR LAR AR R R0 Relocae Proit
TASERAAREEN AN AR AR AR AR RRLRAAOGLIE st ulpwt
® bl oo ki o o oo ek e constants lisring

ﬂ#n’.l‘
ouipat
Bating
levterfacas
i D
STAB,ALTAR MSGLIST|
ESTABR, RLTAB EC
ESTAR, MSGLIST EC

dbiiibbiiiiiiiiiiiiiiiiliiiiiiiiiiiiiiiiiitial decomposition.

program

1n2

COMPOSITE ANALYSIS EXAMPLE 103

The RELOCATE-ADCONS function needs two types of input: a
description of the external symbols (particularly their absolute
addresses) and a description of all address constants. Interface 2
contains two inputs: ESTAB and RLTAR, a table containing a pointer
to each address constant and a pointer (or index) to the corresponding
ESTAB entry. It is not necessary to pass the loaded ohject modules as a
parameter because ESTAB points to the loaded modules. Interface 2
has one output, an error code. Interface 1 is now defined to have no
inputs and three outputs: ESTAB, RLTAB, and a list of error messages
for any errors encountered in the function.

The next step is to take the modules of Figure 6.3 and decompose
them Ffurther. The logic of RELOCATE-ADCONS and PRODUCE.-
OUTPUT-LISTING is easily visualized, so they will not be further
decomposed here. This leaves us with the LOAD-RESOLVED-
OBJECT-PROGRAM module. The first task is to view this module as a
problem to be solved and outline the problem structure as shown in
Figure 6.4. The input stream is the set of object modules from INFILE
and the output stream is a stored object program with all external
references resolved. The input stream's point of highest abstraction
occurs when all INFILE modules have been stored in memery and
represented in ESTAB and RLTAB. The output stream only appears at
the end-point of the problem structure. These two points break the
problem into two functions, and two corresponding subordinate
modules are defined.

Interface 4 has no inputs and returns three outputs: ESTAB,
RLTARB, and a list of error messages. Interface 5 obviously needs
ESTAB as an input. However, since the RESOLVE-EXTERNAL-
REFERENCES module may have to load modules from PROGLIB, it

>~ el
WNFILE - m—
st chc
munbaies [oagam

. 5
in Ouir
kasy Prsshm 4 — [Faram, ALTaR msGLIST
inlile walwrnal
Pt 54 nelevences u| ESTAR, nLTAE |EsTan mLvAR, MEGLIST

Figure 4 Decompuosition of LOAD-RESO LVED-ORBRJECT-PROGRAM.

104 PROGRAM STRUCTURE DESIGN

may have to add entries to both ESTAB and RLTAB, requiring them
both as inputs and outputs.

Moving down the hierarchy, we can now attempt to decompose the
LOAD-INFILE-MODULES module. Its problem structure is an itera-
tive process as shown in Figure 6.5. The problem is simple enough so
that decomposition is not necessary. However, because of a goal 1 have
in mind {minimizing the number of modules that are aware of the

- representations of ESTAB and RLTAB), two functions are broken out

as separate modules. Note that LOAD-INFILE-MODULES also calls
the operating system for two functions: reading from INFILE and allo-
cating blocks of main storage. ESTAB is an input on interface 6 and
RLTAB is an input on interface 7, which ensures thal the called
modules are predictable and reentrant, One value of EC (error code) in
interface 6 indicates an attempt to insert a duplicate name with type
MD or EP into ESTAB.

We can now search for another module to decompose; we choose
RESOLVE-EXTERNAL-REFERENCES from Figure 6.4. The input
stream is the set (possibly empty) of unresolved references and the
oufput stream is a complete object program. The points of highest
abstraction and the resulting decomposition are indicated in Figure 6.6.

We are faced with an interesting tradeoff at this point. Modules

' LOAD-PROGLIB-MODULE and LOAD-INFILE-MODULES are

iy ~ similar in function, suggesting the alternative of generalizing the latter
- module to perform both functions. This is not an unreasonable tradeofT,

but I chose not to use a single module for two reasons: the fles have dif-

Alkacare
starmje @il
SIDrE Néal

ESTABR, MAME, ESTAB, ENTHY NI, |
T¥PE, ADDRESS EC

[RLTAE, ENTAY NO.|ALTAD, EC

ADCOM ADDRESS

Add exiernal Add adcon
syenbgl 1o 117
ESTABR ALTAB

Figure 6.5] Decomposition of LOAD-INFILE-MODULES.

COMPOSITE ANALYSIS EXAMFLE 108

¥ l::lr ;r i
AL in 1w ESTAR
PROGLIE
PROGLIA ikt and RELTAH

Linresnband Camplete
exrernal abject
references g
In Chat
Remlve ESTABR ESTAB, DONEFLAG,
e larmal B MAME OF am
ww Ethalg UNRESOLVED ER
9 . ESTAB, ALTAB, |ESTAB, ALTAR,
g MODULE MAME | MSGLIST
Mabch ER e by 1] Same a5 Mo. @
ilems in FROGLIB 1 Same ay Noo 7
ESTAR maiule =
BAud external Add sdcon
symbals o ™
ESTAE RLTAB

Figure 66 Final decomposition.

ferent file organizations, and using a single module would introduce con-
trol coupling (explicitly telling the module which file to read). Note,
however, that I can use the subordinate modules of LOAD-INFILE.
MODULES as shown.

Module MATCH-ER-ITEMS is quite simple. It scans ESTAB for
unresolved names (indicated by a zero address field). When it
encounters one it scans ESTAB looking for the same name of type MD
or EP. If it finds one, it puts its address field into the address field for
the unmatched name and then continues looking for other unmatched
names. [t returns when there are no symbols remaining unmatched
(setting DONEFLAG) or when a name is encountered that cannot be
matched (and returning the name as an output), Module RESOLVE-
EXTERNAL-SYMBOLS is also quite simple; it iteratively calls
MATCH-ER-ITEMS and LOAD-PROGLIB-MODULE until all
symbols are matched or unmatched symbols cannot be located in
PROGLIB. This is not the most efficient way to perform this function,
but it is the simplest way. As Knuth [8] says, “Premature optimization
is the root of all evil.” After we have a working program, we can
perform performance measurements and optimize the logic of one or

Load a
T TS

Produce
oantpul
ligting

Load resolwed

Rissobve
wxiernal
symbals

L
HLTA%

]
Add ext | Match ER} Fincl
|
|

symbal iterms WEgn an ESTABMCGR

to ESTAB I ESTAB ESTAB

Figure 6.7 The end result.

Moles

LOAD-INFILE-MODULES uses operating system functions GET (from INFILE)
and GETMAIM (to ollacate storage).

LOAD-A-PROGLIB-MODULE uses system functions FIND and GET (from
PROGLIB) and GETMAIM.

PRODUCE-QUTPUT-LISTING uses system function PUT (1o OUTFILE],

ESTAR entry contains symbol nome, type (MD, EP, or ER), and allocated
machine addrass.

RLTAB entry contains number of corresponding ESTAB entry and the
machine address of the address constant.

1066

COMPOSITE ANALYSIS EXAMPLE 107

In Out
1 ESTAB, RLTAB, MSGLIST
2 ESTAB, RLTAB EC
3 ESTAR, MSGLIST EC
4 ESTAB, RLTAB, MSGLIST
5 ESTAB, RLTAB ESTAB, RLTAR, MSGLIST
& ESTAB, MAME, TYPE, ADDRESS ESTAB, ENTRY MO., EC

7 RLTAB, ENTRY MO, ADCOMN ADDRESS RLTAB, EC

8 ESTAB ESTAB, DOME FLAG, NAME
OF UMRES. ER
g ESTAB, RLTAB, MODULE MAME ESTAB, RLTAB, MSGLIST
10 SAME AS MO, &
11 SAME AS MO, 7
12 ESTAB, EMTRY NO. MAME, TYPE, ADDRESS, EC
13 SAME AS MO, 12

more modules if warranted. (These points are mentioned only for the
reader's understanding of the loader; we are not really interested in
maodule logic at this time).

In seanning the current state of the design, | can find no other
modules that need further decomposition. Hence we could call the
design complete at this point. However, 1 still have the objective in
mind that | mentioned earlier of minimizing the number of modules
that know the attributes and representation of ESTAB and RLTAB. [
can accomplish this by combining modules into informational-strength
modules as shown in Figure 8.7, To isolate all knowledge of ESTAB into
one module, | need to create a new function (entry point) named FIND-
ITEM-IN.-ESTAR, called by RELOCATE-ADCONS and PRODUCE-
OUTPUT-LISTING as shown. Note that although other modules pass
ESTAB and RLTAB as parameters, only the two informational-
strength modules ESTABMGR and RLTABMGR are aware of the

T‘_f{.

108 PROGRAM STRUCTURE DESIGN

winsides” of the tables. For instance, only ESTABMGR knows the
format of the ESTAB entries, whether ESTAB is a sequential table or a
list, and whether ESTAB entries are sorted or unsoried. ‘

In the final design in Figure 6.7 we have achieved several desirable

results:

1. Six modules have functional strength; the other two have informa-
tional strength. - i

2. Each module is small and its logic is easily grnspei:l. ,

3. Knowledge of ESTAB and RLTAB is hidden within single modules.

4, Only two modules are aware of the furmat of compiler-produced
ohject modules. :

5. Except for these two modules (which are stamp coupled), the only
form of module coupling is data coupling. I3 ,

6. All input/output operations to each file occur only within a single
module.

Just as a reminder, an actual loader would contain one additional
detail: it would either initiate execution uf the loaded program or return
the entry-point address of the loaded program to its caller.

VERIFICATION

Three steps can be taken to find flaws or errors in the program
structure design: an n-plus-and-minus-one review, a static review, ..-1nd !
walk-through. The n-plus-and-minus-one review is a formal reading of

" the design documentation by the n—1 designers (authors of the system

architecture and external specification), who look for translation mis-
takes, and by the n+1 designers (producers of the module exferl?al
design), who check for feasibility, understandahility, and cnmplatlhuhty
with the programming language to be used and the underlying host
systen.

The static review is an evaluation of the design by a second party
based on the guidelines discussed earlier in this chapter. The reviewer
should check the design by considering such questions as: Do all
modules have functional or informational strength? If not, why not? Are
all modules strictly data coupled? Are all modules predi.clalhle'? Is the
decomposition complete (e.g., can you visualize the !uglc of each
module)? Has the data access of each module been minimized?

The third verification step is the walk-through, similar to the walk-
through methods discussed for the prior design processes. Paper test

REFERENCES

cases are designed (e.g., Figures 6.1 and 6.2 can be used as a test case
for the loader) and each test case is stepped through the module struc-
ture while keeping track of the system state, In doing this, assume that
the logic of each module is correct (that each module performs its fune-
tion correctly). Look for flaws in the structure such as missing func-
tions, incomplete interfaces, and incorrect resulis. Use enough test cases
to ensure that each module is invoked at least once. Also, include test
cases for invalid inputs (e.g., an object module with no ESD records)
and boundary conditions (e.g, an object module with no external
references and an object module with no address constants).

REFERENCES

1. B. H. Liskov, “A Design Methodology for Reliable Software Systems,”" Proceedings
of the 1972 Fall Joint Computer Conference. Montvale, N.J.: AFIPS Press, 1972,
pp- 180 154,

2, G J. Mvers, Relinble Software Through Composite Design. New York: Petrocellif
Charter, 1975.

3. D L. Parnas, “On the Criteria to be Used in Decomposing Systems into Modules,”
Communications of the ACM, 15 (21, 10563 1058 (1972).

4. W. Wulf and M. Shaw, "Global Variable Considered Harmful,"" SIGPLAN Notices,
B (2}, 2B-34 (1971).

5 M. J. Spier, "A Critical Look at the State of our Science,” Operating Systems
Review, B (21, 9-15(1974)

6. J. B. Geodenough and D. T. Ross, “The Effect of Software Structure on Reliability,
Modifiahility, Reusability, Efficiency: A Preliminary Analysis,” HReport R-2099,
SofTech Corp., Waltham, Mass., 1077

7. R.C. Holt, "Structure of Computer Programs: A Survey,” Proceedings of the IEEE,
@3 (6), 379 -893 (1975).

8. D.E. Knuth, “Structured Programming with GO T0 Statements,” Computing Sur-
vevs, 6 (4), 261-301 (1974).

9. Composite design is closely allied with the methodology called “structured design,”
the main dillerences h&ing t|:r|||.:i|'|-:|||:-||:!.I and notation. Structured dﬂig‘ll is discussed
in E. Yourdon and L. L. Constartine, Strecfured Design, New York: Yourdon, 1976,

»

OFFSET
0

50

100

200

220

300

COMPOSITE ANALYSIS EXAMPLE 101

Source program [hypothetical language!)

PROC M
.
.

caLL C
.
.

ENTRY B
L]
L]

¥ DCL ADDR (X}

0] PROC C
-
L]

30 CALL B

60

Motes

Adcon at offset 54 to point
to module C
Adcon at offset 200 to point
ta X

Adcon at offset 34 to point
to entry B

¥ DCL# » =
.
L]
INFILE Contents
ESD MD 0ooo
ESD EP 0100
ESD ER 0000
TXT 0300
TXT 000000
TXT 000220
RLD 0054 -
RLD 0200 1
END
ESD MD 0000
ESD ER 0000
TAT 0060
TXT
RLD 0034 Z
END
Figure 6.1 Sample loader input.

The remaining item to be defined at this level of the design is the
3 Nm tetarnfanoe (tha rrnae marked 1T 92 and 2% Startine with interface

OUTFILE Output

LOADER MEMORY MAP

MODULE/ENTRY PT. LOCATION TYPE

M 100000 MOD
B 100100 EP
G 100300 MQD

Main storage output

Lecations 100000-1002FF contain code for module M
location 100054 contains 100300
location 100200 contains 100220

Locations 100300-100340 contain code for module C
location 100334 contains 100100

Figure 6.2 Corresponding loader output.

Aeiocate
#ddress
cOfgants

Obtain
any PROGLIB
misdules

Aezalve
external
references

_,—r- i
L aaded
Bbjan;i ORI
i
Load a
progeam
1 2 K|
Produce
Lowd resaised Relocate | i i
object i
e I Farm wlcun] ligtimg
Inigstaces
ESTAB in Dt
maching 1 ESTAB RLTAB MSGLIST
e typs _dgine 2| EsTAR RLTAR | eC
1 ‘ ‘l] 3| ESTAB. MSGLIST | EC
RLTAB: e
ESTAR entry address
namber of adcon

I S el

Figure 6.3 Initial decomposition.

102

The RE
description
addresses)
contains tw
to each adc
ESTAB ent
parameter
has one ou
inputs and
for any errc

The nes
them furth
OUTPUT-1
decompose
OBJECT-F
problem to
Figure 6.4.
and the ou
references
occurs whe
representec
the end-po
problem 1
modules ar

Interfac
RLTAB, =2
ESTAB a:
REFERER

Obtain
nput
ey

—_—
IMFILE
ohpect
rradaciil e

Figure 6

bl arfRrgnb P

for any errors encountered in the function.

The next step is to take the modules of Figure 6.3 and decompose
them further. The logic of RELOCATE-ADCONS and PRODUCE-
OUTPUT-LISTING is easily visualized, so they will not be further
decomposed here. This leaves us with the LOAD-RESOLVED:-
OBJECT-PROGRAM module. The first task is to view this module as a
problem to be solved and outline the problem structure as shown in
Figure 6.4. The input stream is the set of object modules from INFILE
and the output stream is a stored object program with all external
references resolved. The input stream’s point of highest abstraction
occurs when all INFILE modules have been stored in memory and
represented in ESTAB and RLTAB. The output stream only appears at
the end-point of the problem structure. These two points break the
problem into two functions, and two corresponding subordinate
modules are defined.

Interface 4 has no inputs and returns three outputs: ESTAB,
RLTAB, and a list of error messages. Interface 5 obviously needs
ESTAB as an input. However, since the RESOLVE-EXTERNAL-
REFERENCES module may have to load modules from PROGLIB, it

Obrain
unreso wid
references

Match
external
references

——— —_—
INFILE Loaded
" object object
maodules program

Load resolved
ohject
program

in Ot
Load Resolve 4 ESTAB, RLTAB, MSGLIST
infile gxrernal
modules references 5| ESTAB, RLTAB ESTAB, ALTAB, MSGLIST

Figure 6.4 Decomposition of LOAD-RESOLVED-OBJECT-PROGRAM.

LEALFRL B e e u....f-._.......—_...—......... sasEna winEE w = T e b e R e - e

interface 6 indicates an m_HmEE S Emml a duplicate name E:: type
MD or EP into ESTAB.

We can now search for another module to decompose; we choose
RESOLVE-EXTERNAL-REFERENCES from Figure 6.4. The input
stream is the set (possibly empty) of unresolved references and the
output stream is a complete object program. The points of highest
abstraction and the resulting decomposition are indicated in Figure 6.6.

We are faced with an interesting tradeoff at this point. Modules
LOAD-PROGLIB-MODULE and LOAD-INFILE-MODULES are

similar in function, suggesting the alternative of generalizing the latter

module to perform both functions. This is not an unreasonable tradeoff,
but I chose not to use a single module for two reasons: the files have dif-

Bagin
reading
a module

Allocate
storage and
store [exi

Load
INFILE In Ot
modules
ESTAB, NAME, ESTAB, ENTRY MNQ.,
. 6| TvPE, ADDRESS |EC
RLTAR ENTRY NO |[RLTAB, EC
| abcon ADDRESS
Add external Add adcon
symbol 1o to
ESTAR RLTAB

Figure 6.5 Decomposition of LOAD-INFILE-MODULES.

ferent
trol ¢
howe:
MOD

M.
unres
encou
or EP
the w
name:
(settin
matel
EXTI
MAT
sym b
PRO(
but it
I1s the
perfor

T:m them

1ipose the
an itera-
nough so
al I have
re of the
oken out
also calls
and allo-
ce 6 and
1e called
" code) In
vith type

‘e choose
he input
and the
[highest
rure 6.6.
Modules
LES are
he latter
tradeoff,
have dif-

T

COMPOSITE ANALYSIS EXAMPLE 105

Store
text of
PROGLIB
module

Find an
urniresnlved
reference

Search for
it in
PROGLIB

Add module
to ESTAB
and RLTAB

—Tl —
Unresolved Complete
external object
references program

In Out
Resolve ESTAB ESTAB, DONEFLAG,
external a MAME OF AN
symbols UNRESOLVED ER
8 9 g ESTAB. RLTAB, |ESTAB, RLTAB,
MODULE NAME | MSGLIST
" Match ER Load a 10 Sme mw. o 8
items in PROGLIB 11 Same as No. 7
ESTAB module =
Add external Add adcon
symbals to to
ESTAB BLTAB

Figure 66 Final decomposition.

ferent file organizations, and using a single module would introduce con-
trol coupling (explicitly telling the module which file to read). Note,
however, that I can use the subordinate modules of LOAD-INFILE-
MODULES as shown.

Module MATCH-ER-ITEMS is quite simple. It scans ESTAB for

Load a

program
/ \
Load resolved Produce
object output
program 2 listing
/ 5
Load Reswnlve
IMFILE externai
modules symbaols
B 9
Load a
7 PROGLIB
module
E)
|
Addt:dcun | Relocate
dcons
RLTAB | 2
10 |
RLTABMGR
12
13
! I :
Add ext] Match ER Find
symbaol l items in l item in ESTAEBMGR
to ESTAB | ESTAB ESTABE

Figure 67 The end result.

Motes

LOAD-INFILE-MODULES uses operating system functions GET (from INFILE)
and GETMAIN (to allocate storage).

LOAD-A-PROGLIB-MODULE uses system functions FIND and GET (from
PROGLIB) and GETMAIN.

PRODUCE-QUTPUT-LISTING uses system function PUT (to QUTFILE}.

ESTAB entry contains symbol name, type (MD, EP, or ER), and cllocated
machine address.

RLTAB entry contains number of corresponding ESTAB entry and the
machine address of the address constant.

106

%]
ey —

= -

R

10
1
12

13

more
read:
mod:

mod:
desig
mine
that
can .
mod
one 1
ITEI
QU1
EST
strer

