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(in press) located two radio-tagged fish there in 
1988. One of the two, an 82.4 cm TL adult, 
was caught and released approx. 10 km up- 
stream from the Yampa River. Our collection 
site near Baggs is 125 air km from the Yampa 
River (perhaps 250 river km because the Little 
Snake meanders extensively), a distance often 
traveled by squawfish in the Green River system 
(Tyus, 1985, 1986). It is, thus, uncertain wheth- 
er the Baggs specimen was a permanent or tem- 

porary Little Snake resident. 
More rigorous, long-term sampling of the 

Little Snake River may lead to a reassessment 
of the status of other "extinct" native fishes in 

Wyoming. Humpback chubs were recently dis- 
covered in the lower Little Snake River in Col- 
orado (Wick et al., in press). Razorback sucker 
and possibly bonytail occur in the Yampa River, 
and these species may also be upstream as well. 
Regardless, suitable habitat at least for adult 
big-river fishes remains available in the Little 
Snake River of Wyoming, and our capture of 
Colorado squawfish there is positive evidence 
for that species. The Little Snake River, thus, 
may be amenable to habitat improvement (for 
example, by augmentation of depleted flows) in 
behalf of endangered fishes, and should be con- 
sidered among potential recovery sites for these 
"extinct" native fishes. 
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bardi of that agency is appreciated. 
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MEASURING PARENTAL INVESTMENT 
IN NONSPHERICAL EGGS.-The growing 
body of life-history information on fishes has 
prompted an increase in the number of com- 
parative studies attempting to find patterns in 
this data (Moser et al., 1984; Gross, 1987; Mit- 
ton and Lewis, 1989). Egg size is a commonly 
reported and examined life-history parameter 
because it provides an estimate of parental in- 
vestment in offspring. The ideal measure of this 
investment is egg mass or egg volume; however, 
it is frequently impractical (or impossible) to 

directly measure these values because of the 
small size of many fish eggs or the lack of suit- 
able instruments. Therefore, the most com- 

monly reported measure of egg size is egg di- 
ameter (Breder and Rosen, 1966; Moser et al., 
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1984) because this can often be measured using 
calipers or by a microscope fitted with an ocular 
micrometer. Unfortunately, egg diameter only 
properly applies to spherical eggs, and many 
fishes lay eggs that are nonspherical (Breder, 
1943). For example, ellipsoidal eggs are found 
in at least two dozen families of fishes (Table 
1). Several other egg shapes are also found, 
though much less commonly. Eggs of some spe- 
cies of Gobiesocidae, Blenniidae, and Tripte- 
rygiidae are hemispherical (pers. obs.; Breder 
and Rosen, 1966; Thresher, 1984) whereas oth- 
er gobiesocid eggs are generalized ellipsoids. 
There are also some irregularly shaped fish eggs: 
some Syngnathidae have pear-shaped eggs 
(Fritzsche, 1984); the darters of the percid ge- 
nus Microperca produce eggs with a distinct in- 
dentation on one side (Burr and Ellinger, 1980); 
and the eggs of many gobies cannot be de- 
scribed by any regular geometric shape (Breder, 
1943). In some cases, the departure from a 

spherical shape is not significant, but for others 
the shapes of nonspherical eggs present prob- 
lems for studies of egg size because measure- 
ments of these eggs cannot be directly com- 

pared with those of spherical eggs. Previous 
researchers have dealt with this problem by us- 
ing the length of the longest axis of the egg, or 
by averaging the lengths of the long and short 
axes to obtain a linear measure of egg size. Both 
of these methods will overestimate the size of 

nonspherical eggs. Herein, I propose an alter- 
nate measure for nonspherical egg shapes that 
can be used to compare these eggs with spher- 
ical eggs. 

Nonspherical eggs can be compared with 
spherical eggs by calculating the "effective di- 
ameter" of nonspherical eggs. The effective di- 
ameter is the diameter the egg would be if it 
were reshaped into a sphere of the same volume 
as the nonspherical egg. Most nonspherical eggs 
are referred to as ellipsoidal. Such an egg has 
a long major axis and two minor axes of equiv- 
alent length and resembles a sphere stretched 
along one axis. This shape is technically called 
a prolate spheroid, but I will refer to it as an 
ellipsoid in keeping with common practice. The 
volume of an ellipsoidal egg, assuming a major 
axis of length a and minor axes of length b, is 
given by 

V = %4/(2a)(/2b)2 = l/6ab2 [1] 

The volume of a spherical egg of diameter d is 

V = /6rd3. [2] 

Setting [1] and [2] equal to each other, we de- 
rive a formula for the effective diameter (d) of 
an ellipsoidal egg: 

d, = [ab2]^. [3] 

Using formula [3], it is possible to calculate the 
effective diameter of ellipsoidal eggs given the 
lengths of the major and minor axes. Because 
in many cases these axis lengths have been re- 
ported in the literature, new data need not be 
collected to calculate the effective diameter. The 
effective diameters of these eggs can then be 
compared directly with the diameters of spher- 
ical eggs. If desired, effective diameter can eas- 
ily be converted to volume using equation [2]. 
Table 1 provides the axes lengths and effective 
diameters for some ellipsoidal eggs. Note that, 
as the ratio of major to minor axis length in- 
creases, so too does the error from using their 
average as the measure of diameter. 

It is possible to derive similar formulae for 
other nonspherical egg shapes (Table 2). Oblate 
spheroids have two major axes of equal length 
and one minor axis (disc shaped). It is not known 
whether any fish eggs truly are of this shape, 
though some gobiesocid eggs might be (Breder, 
1943). A few eggs are generalized ellipsoids, 
meaning that they have three axes, each of dif- 
ferent length. The clingfish, Gobiesox strumosus, 
has axes of 0.94, 0.79, and 0.67 mm (Runyan, 
1961) for an effective diameter of 0.79 mm. 
Blennius galerita has hemispherical eggs with a 
basal diameter of 2.0 mm (Breder and Rosen, 
1966). The effective diameter of these eggs is 
1.6 mm. 

Future comparative studies of fish egg size 
should use the effective diameter of nonspher- 
ical eggs in their analyses, rather than averaging 
the axes, or using only the longest axis. Simi- 
larly, researchers examining nonspherical eggs 
should endeavor to report the lengths of the 
major and minor axes, not just the longest axis 
as is commonly done, to aid future comparative 
studies. Furthermore, it is also necessary to re- 
port whether the eggs were taken from the ova- 
ry, were found after laying, and whether they 
were water hardened or preserved. Frequently 
this information is not provided, and it can make 
a substantial difference to egg size (Fleming and 
Ng, 1987). 

For comparative studies involving egg size and 
linear values such as fish length, effective di- 
ameter provides a convenient linear measure of 
egg size. However, for comparisons involving 
three-dimensional values such as fish weight, 
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TABLE 1. MEASUREMENTS OF SOME ELLIPSOIDAL EGGS. Ratio is the ratio of the major axis to the minor axis. 
d, (effective diameter) is explained in the text. The d, for some Gobiidae is only approximate because some 
of these eggs depart from an ellipsoidal shape. Ellipsoidal eggs are also found in the Salmonidae (Fleming 
and Ng, 1987), Aplocheilidae (Able, 1984), Aulorhyncidae (Breder and Rosen, 1966), Ostraciidae (Aboussouan 
and Leis, 1984), Scaridae (Winn and Bardach, 1960), Bothidae and Soleidae (Ahlstrom et al., 1984), but 

quantitative data were not available. 

Major axis Minor axis 
Species (mm) (mm) Ratio d, (mm) Reference 

Petromyzontidae 
Entosphenus tridentatus 

Lampetra richardsoni 

Amiidae 
Amia calva 

Engraulididae 
Anchoa hepsetus 
Anchoa mitchilli 
Anchoviella argyrophana 
Anchoviella tri 

Cetengraulis mysticetus 
Engraulis austalis 

Engraulis capensis 
Engraulis encrasicholus 

Engraulis japonicus 
Engraulis mordax 

Stolephorus baganensis 
Stolephorus heterolobus 

Stolephorus indicus 

Stolephorus insularis 

Stolephorus zollingeri 
Stolephorus tri 

Cyprinidae 
Acheilognathus cyanostigma 
Acheilognathus tabira 
Pseudorasbora parva 
Rhodeus armarus 

Clariidae 
Clarias mossambicus 

Ophidiidae 
Ophidion scrippsae 

Carapidae 
Carapus acus 

Carapus dentatus 

Antennariidae 
Histrio histrio 

Scomberesocidae 
Cololabis saira 
Scomberesox saurus 

Syngnathidae 
Hippocampus abdominalis 

Syngnathus schlegeli 

Dactylopteridae 
Dactylopterus volitans 

1.18 
1.09 

1.07 
1.03 

2.8 2.2 

1.5 
0.84 
1.2 
1.73 
1.2 
1.13 
1.55 
1.37 
1.4 
1.34 
1.24 
1.23 
1.15 
1.92 
1.13 
1.25 

3.69 
2.01 
1.7 
2.5 

0.69 
0.65 
0.68 
0.58 
0.6 
0.55 
1.02 
0.81 
0.62 
0.66 
0.72 
0.60 
0.81 
0.69 
0.55 
0.68 

1.07 
1.31 
1.1 
1.27 

2.0 1.5 

1.06 

0.9 
1.32 

1.00 

0.75 
1.05 

0.7 0.6 

1.83 
2.52 

2.3 
1.24 

1.56 
2.32 

1.4 
1.0 

1.1 1.11 
1.1 1.05 

1.3 2.38 

2.2 
1.3 
1.8 
3.0 
2.0 
2.1 
1.5 
1.7 
2.3 
2.0 
1.7 
2.1 
1.4 
2.8 
2.1 
1.8 

3.4 
1.5 
1.5 
2.0 

0.89 
0.71 
0.82 
0.83 
0.76 
0.70 
1.17 
0.97 
0.81 
0.84 
0.86 
0.76 
0.91 
0.97 
0.70 
0.83 

1.62 
1.51 
1.27 
1.59 

1.3 1.7 

1.1 1.02 

1.2 0.80 
1.3 1.13 

1.2 0.63 

1.2 1.65 
1.1 2.38 

1.6 1.7 
1.2 1.1 

0.80 0.72 1.1 0.75 3 

16 
16 

4 

3 
11 
3 
4 
4 
3 
3 
3 
3 

10 
3 
3 

11 
11 
3 
3 

4 
4 
4 
4 

4 

10 

3 
3 

19 

4 
5 

4 
4 
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TABLE 1. CONTINUED. 

Major axis Minor axis 
Species (mm) (mm) Ratio d, (mm) Reference' 

Scorpaenidae 
Scorpaena guttata 1.26 1.18 1.1 1.21 20 
Scorpaena notata 0.88 0.76 1.2 0.80 20 
Scorpaena porcus 0.92 0.84 1.1 0.87 20 
Scorpaena scrofa 0.88 0.68 1.3 0.74 20 

Plesiopidae 
Plesiops semeion 0.9 0.6 1.5 0.69 4 

Cichlidae 
Cichlasoma cyanoguttatum 2.2 1.7 1.3 1.85 1 
Cichlasoma nigrofasciatum 2.5 1.9 1.3 2.08 1 
Tilapia esculenta 4.5 4.0 1.1 4.16 6 
Tilapia galilaea 3.0 2.2 1.4 2.44 6 
Tilapia karamo 5.2 4.5 1.2 4.72 6 
Tilapia macrocephala 2.9 2.3 1.3 2.48 3 

Pomacentridae 

Abudefduf saxatalis 0.95 0.55 1.7 0.66 17 
Amphiprion chrysopterus 2.4 0.9 2.7 1.25 2 
Amphiprion percula 2.2 0.91 2.4 1.22 3 
Amphiprion bicinctus 3.3 1.2 2.8 1.68 4 
Chromis caerulus 0.63 0.46 1.4 0.51 18 
Chromis dispilus 1.0 0.61 1.6 0.72 8 
Chromis multilineata 0.6 0.5 1.2 0.53 12 
Chromis notatus 0.76 0.58 1.3 0.63 4 
Dascyllus trimaculatus 0.70 0.49 1.4 0.55 7 
Heliastes chromis 0.72 0.50 1.4 0.56 3 
Pomacentrus leucorus 0.85 0.45 1.9 0.56 3 
Pomacentrus leucostictus 0.8 0.40 2.0 0.50 3 

Blenniidae 
Blennius inaequallis 0.78 0.62 1.3 0.67 3 
Blennius palmicornis 1.25 1.08 1.2 1.13 3 
Blennius pavo 1.2 1.04 1.2 1.09 3 
Ecsenius bicolor 0.75 0.5 1.5 0.57 19 
Petroscirtes bhattacharyae 0.80 0.53 1.5 0.61 4 

Schindleriidae 
Schindleria pietschmanni 1.30 0.50 2.6 0.69 21 

Ammodytidae 
Ammodytes laneolatus 0.8 0.3 2.7 0.42 3 
Ammodytes tobianus 0.8 0.3 2.7 0.42 3 

Eleotrididae 
Eleotris oxycephala 0.40 0.32 1.3 0.34 15 
Mogurnda mogurnda 2.6 0.9 2.9 1.28 4 
Parioglossus taeniatus 1.3 0.6 2.2 0.78 4 

Gobiidae 

Acanthogobius favimanus 5.5 0.9 6.1 1.65 15 
Acentrogobius neilli 0.4 0.14 2.9 0.20 3 
Acentrogobius masago 1.2 0.4 3.0 0.58 4 
Aphia minuta 1.0 0.8 1.3 0.86 3 
Bathygobius soporator 2.39 0.41 5.8 0.74 3 
Chaenogobius urotaenia 3.0 1.0 3.0 1.44 4 
Chaeturichthys hexanema 2.9 0.8 3.6 1.23 4 
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TABLE 1. CONTINUED. 

Major axis Minor axis 
Species (mm) (mm) Ratio d, (mm) Reference? 

Chasmichthys dolichognathus 4.15 1.35 3.1 1.96 3 
Chasmichthys gulosus 4.65 1.22 3.8 1.91 3 
Clevelandia ios 0.74 0.57 1.3 0.62 4 
Crystallogobius nilssoni 1.78 0.57 3.1 0.83 3 
Ctenogobius bergi 4.0 1.1 3.6 1.69 4 
Ctenogobius dotui 2.0 0.4 5.0 0.68 4 
Eutaenichthys gilli 2.7 0.8 3.4 1.20 4 
Evorthodus lyricus 0.45 0.20 2.3 0.26 15 
Glossogobius brunneus 3.5 1.05 3.3 1.57 3 
Gobiosoma bosci 1.26 0.44 2.9 0.62 3 
Gobiosoma robustum 1.5 0.53 2.8 0.75 3 
Gobiusferrugineus 1.0 0.72 1.4 0.80 3 
Gobiusflavescens 0.7 0.57 1.2 0.61 3 
Gobius jozo 2.8 0.62 4.5 1.02 3 
Gobius lidwilli 1.2 0.7 1.7 0.84 4 
Gobius microps 0.9 0.68 1.3 0.75 3 
Gobius niger 1.17 0.28 4.2 0.45 3 
Gobius minutus 1.0 0.55 1.8 0.67 3 
Gobius nudiceps 1.8 0.97 1.9 1.19 3 
Gobius ostreicala 1.8 0.45 4.0 0.71 4 
Gobius paganellus 2.24 0.80 2.8 1.13 3 
Gobius pictus 0.8 0.62 1.3 0.67 3 
Luciogobius guttatus 2.5 0.7 3.6 1.07 4 
Luciogobius saikaiensis 3.0 1.3 2.3 1.72 4 
Mistichthys luzonensis 0.5 0.09 5.6 0.16 3 
Percottus glehni 3.8 1.3 2.9 1.86 15 
Periophthalmus barbarus 0.76 0.61 1.2 0.66 4 
Pterogobius elapoides 2.3 0.8 2.9 1.14 4 
Pterogobius zonoleucus 2.1 0.6 3.5 0.91 4 
Rhinogobius similis 2.5 0.63 4.0 1.00 4 
Stigmatogobius hoevenii 2.83 1.25 2.3 1.64 3 
Triaenopogon barbatus 1.5 0.5 3.0 0.72 4 
Tridentiger undicerneus 1.15 0.45 2.6 0.62 4 
Tridentiger trigonacephalus 1.4 0.6 2.3 0.80 4 
Typhlogobius californiensis 0.83 0.75 1.1 0.78 9 

Gobioididae 
Taenioides rubicundus 1.3 0.7 1.9 0.86 15 

Gobiesocidae 
Chorisochismus dentex 1.47 0.92 1.6 1.08 3 
Lepadogaster bimaculatus 1.37 1.08 1.3 1.17 3 
Lepadogaster candollii 1.24 1.07 1.2 1.12 3 
Lepadogaster gouani 1.8 1.50 1.2 1.59 3 
Lepadogaster lepadogaster 1.8 1.5 1.2 1.60 4 
Trachelochismus melobesia 1.65 1.35 1.2 1.44 13 
Trachelochismus pinnulatus 1.81 1.48 1.2 1.58 13 

Alabetidae 
Alabes rufus 1.2 1.0 1.2 1.06 4 
a -pers. obs.; 2-Allen, 1975; 3-Breder, 1943; 4-Breder and Rosen, 1966; 5-Collette et al., 1984; 6-Fryer and Iles, 1972; 7-Garnaud, 

1957; 8-Kingsford, 1985; 9-MacGinitie, 1939; 10-Matarese and Sandknop, 1984; 11--McGowan and Berry, 1984; 12-Myrberg et al., 
1967; 13-Ruck, 1971; 14-Ruck, 1973; 15-Ruple, 1984; 16-Scott and Crossman, 1979; 17-Shaw, 1955; 18-Swerdloff, 1970; 
19-Thresher, 1984; 20-Washington et al., 1984; 21-Watson et al., 1984. 
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TABLE 2. FORMULAE FOR CALCULATING THE VOLUME AND EFFECTIVE DIAMETER (dE) OF SEVERAL NONSPHERICAL 

EGG SHAPES. 

Egg shape Description Volume d, 

Ellipsoid (prolate spheroid) 1 major axis (a) I%sr(/2a)('/2b)2 [ab2] 
2 minor axes (b) of equal length 

Oblate spheroid 2 major axes (a) of equal length %7r(2a)2(/2b) [a2b]' 
1 minor axis (b) 

Generalized ellipsoid 3 unequal axes (a,b,c) 4/lrabc [abc]" 
Hemispheroid 1 major axis (a) V1/,2ra 0.79a 

egg volume is a more appropriate measure of 
egg size. Effective diameter can easily be con- 
verted to volume, and vice versa (using equation 
[2]). 

Egg size is only a first step toward understand- 
ing parental investment in fish eggs. It is im- 
portant that parental investment research ques- 
tions be explicit about exactly what is being 
compared. For example, if the question con- 
cerns the quantity of material from which the 

offspring forms its body, then egg size is a rea- 
sonable starting value for comparisons. On the 
other hand, if the question concerns the quan- 
tity of investment that the parent puts into each 
egg, then the analysis should properly include 
not only the investment in the egg contents but 
also any attachment devices (e.g., hooks, fila- 

ments) or external casings (e.g., the raft struc- 
ture of anglerfishes, the egg cases of many 
sharks) surrounding the egg. These extras can 
be much larger than the actual eggs (Thresher, 
1984), and few if any data exist to quantify in- 
vestment in these structures. 
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TROUT FORAGING FAILURES AND THE 
EVOLUTION OF BODY SIZE IN STICK- 
LEBACK.-One advantage to increased adult 
size in fishes is defense against gape-limited pi- 
scivores (Popova, 1967; Zaret, 1980). Handling 
time increases sharply as size of prey approaches 
maximum swallowing ability of a predator 
(Werner, 1974; Hoyle and Keast, 1987, 1988), 
and the implicit advantage to prey in these con- 
ditions is that their escape probabilities are im- 
proved. However reasonable this assumed ad- 
vantage, there remains little experimental data 
that have addressed the relationships between 
predator foraging failures and increased body 
size of the prey during pursuit and manipula- 
tion. Such failures are fundamental to the evo- 
lution of defenses against predators (Vermeij, 
1982). 

Threespine stickleback (Gasterosteus aculeatus 
vary from 30-60 mm SL over their European 
and North American distribution (Wootton, 
1984 for review), but in several disjunct lake 
populations in western North America, gigan- 
tism occurs, with adults ranging from 80-115 
mm (Moodie, 1972a; Moodie and Reimchen, 
1976; Bell, 1984). Attributes of morphology and 
life history, including strong predation pres- 
sure, of the giant form in Mayer Lake led Moo- 
die (1972b) to suggest that large body size was 
an adaptation against trout predators. At a dif- 
ferent lake population where gigantism also oc- 
curs, predation by cutthroat trout (Oncorhynchus 
clarki) was prevalent (Reimchen, 1990). Adult 
stickleback appeared to be a less preferred prey 
than subadults and juveniles, suggesting an ad- 
vantage to large size. Yet these predators could 
simply be consuming each size class of stickle- 
back in proportion to the abundance in the pop- 
ulation, and as such no size-refuge may be in- 
volved. As a separate method to evaluate size 
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