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 California’s native salmonid populations are declining, as evident by the 2008 

fishing closures on one historically abundant species, Chinook Salmon (Oncorhynchus 

tshawytscha). One major impact on the spring-run of Chinook Salmon within the Central 

Valley has been the damming of natal rivers, severely limiting available spawning 

habitat. Additionally, many of the streams used by spring-run Chinook Salmon lack 

extensive habitat data, such as substrate composition, velocity, depth, and woody debris 

availability, and specific factors limiting spawning habitat suitability are poorly 

understood.  

 Bayesian Networks are one modeling method that could help to understand these 

systems and direct restoration efforts toward the most limiting factors within a watershed. 

These networks are capable of incorporating quantitative data (e.g., derived from 

empirical studies, literature review, and publicly available spatial data) and qualitative 
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data (e.g., expert elicitation), making them a powerful tool for decision making in data-

poor environments. Bayesian Networks are also easily updatable as new empirical data 

become available.  

 I constructed a Bayesian Network for a Northern California stream, Deer Creek in 

Tehama County, to provide a useful tool for guiding restoration of spring-run Chinook 

Salmon spawning habitat. I developed the network using habitat variables thought to be 

indicators of habitat quality, including stream slope, average width, mean minimum 

coniferous cover from above, soil type, water year type, and potential existence of a 

partial barrier downstream. I used the Norsys Netica software to establish the Bayesian 

Network, and applied this network to each subreach (defined in this context as a riffle-

pool stream segment) to determine the suitability of each subreach for Chinook Salmon 

spawning. Probability of redd (spawning nest site) presence over 50% was used to 

indicate good habitat suitability for spawning. Redd data was split into two independent 

sets. I used redd data from one 6 km reach to fit the model (i.e., develop conditional 

probabilities by back calculating from known outcomes), and used redd data from a 

second 6 km reach for prediction and comparison with the empirical data for purposes of 

model validation.  

 I used two types of model validation. I conducted a sensitivity analysis on the 

network, to determine the influence of each independent variable and determine whether 

it had an unexpected or disproportionate effect on the outcome. I also conducted an 

ANOVA comparing redd densities from subreaches predicted to be good spawning 
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habitat against those predicted to be poor spawning habitat by the network, to assess if 

there was a statistically significant difference between the two. 

 Of the four scenarios I modeled with the network, three exhibited significantly 

higher redd densities in subreaches designated as good spawning habitat according to 

probability of redd occurrence (National Hydrography Dataset streamline under dry 

conditions, traced streamline under dry conditions, and traced streamline under non-dry 

conditions). The National Hydrography Dataset (NHD) streamline under non-dry 

conditions overestimated likelihood of redd presence. This was likely due to an 

exaggerated effect of mean minimum coniferous cover from above within the NHD 

model. My results, particularly using the traced streamline network, indicate that 

Bayesian Networks can be used to predict habitat use and prioritize spawning habitat 

restoration for Chinook Salmon in a data-poor northern California watershed.  
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INTRODUCTION 

As many of California’s native salmonid populations continue to decline, it is 

becoming increasingly important to identify restoration opportunities within their 

respective watersheds. The Chinook Salmon (Oncorhynchus tshawytscha) is a notable 

member of this group that draws a great deal of interest due to its commercial, cultural, 

and recreational value (Yoshiyama et al. 1998). In California’s Central Valley, two runs 

of Chinook Salmon have been federally listed under the Endangered Species Act, winter-

run as “endangered” and spring-run as “threatened” (NOAA 2005). Winter-run Chinook 

Salmon are native only to the Sacramento River mainstem and its upper tributaries 

(primarily above Shasta Dam) and are now confined primarily to the mainstem and Battle 

Creek (Moyle 2002). Spring-run Chinook Salmon, in contrast, were once abundant 

throughout the Central Valley, with populations in various tributaries to the Sacramento 

and San Joaquin Rivers (Yoshiyama et al. 1998). Though the San Joaquin River 

populations of spring-run went extinct between 1945 and 1950 with the construction of 

Friant Dam occurring in 1948 (Moyle 2002), there are still numerous populations in the 

Sacramento River basin.  

Chinook Salmon are anadromous, meaning they hatch in freshwater and migrate 

to the ocean to mature before returning to spawn (Gross et al. 1988), and runs are 

identified by their unique life-history strategies (Moyle 2002). Chinook Salmon are also 

semelparous and die soon after spawning. Adult spring-run Chinook Salmon migrate in 
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the spring (March through June) and hold over the summer in cold pools, historically 

within higher elevation freshwater streams, until early fall when they spawn. Spawning 

nests, or redds, are constructed in gravels within streams, and can be identified by clean 

gravel with a distinct bowl shape (or pot) in the substrate and a downstream tailspill of 

gravels that have been excavated by the female during construction of the redd. Size of 

the redd can then also be used to distinguish Chinook Salmon redds from those of other 

salmonids, because Chinook Salmon redds are typically larger than the redds of other 

salmonids in the Central Valley (Gallagher and Gallagher 2005). Additionally, salmon 

use chemical signatures to navigate back to their natal watersheds and spawn once they 

mature (Dittman and Quinn 1996). Spawning areas therefore represent a critical 

component of Chinook Salmon life-history, and are vital to the persistence of the species, 

regardless of run or stream of origin. 

Modeling is increasingly being used in fisheries science as a way to guide 

conservation efforts. Often times these models (e.g., Salmod, Shiraz, EDT) rely on a 

great deal of empirical habitat data, based on extensive stream surveys (e.g., substrate 

composition, detailed velocity information, depths, etc.), in order to inform various 

parameters (Bartholow 2004, Scheuerell et al. 2006, Steel et al. 2009). Many Northern 

California streams lack detailed empirical habitat data, but geospatial or qualitative data 

may be available. One tool that allows for the incorporation of empirical, geospatial, 

and/or qualitative data (i.e., expert opinion) into a model is a Bayesian Belief Network, 

sometimes simply referred to as a Bayesian Network (Pollino et al. 2007a, Pollino et al. 

2007b).  
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Bayesian Networks 

Bayesian Networks are a tool that can be used within data poor watersheds by 

people or organizations needing to direct habitat restoration for fishes of various life 

stages. By customizing variables and conditional probability tables, application of 

Bayesian Networks can be used to investigate complex biological and ecological 

management problems (Borsuk et al. 2004, Marcot et al. 2001, Ticehurst et al. 2007). 

Bayesian Networks are one example of a mathematical concept known as probability 

theory. 

Probability theory is a branch of mathematics that deals well with uncertainty, by 

assigning probabilities to events based on variables (DeGroot and Schervish 2010). 

Variables can either be empirical (e.g., observed data) or qualitative (e.g., best 

professional judgment) in nature. Specifically, the Bayesian Networks use Bayes’ 

Theorem, a method of determining conditional probability. Conditional probability is the 

probability that an event will happen given some form of known information about a 

related event (DeGroot and Schervish 2010). Important to this concept are the prior 

probabilities, also referred to simply as priors, which represent the probability that a 

variable (i.e., related event) is in a particular state (Marcot et al. 2001). Determining these 

priors, either via empirical data or expert opinion, is critical to understanding model 

outputs. Data for the state of each of the informing variables in a Bayesian Network are 

contained in what are referred to as nodes. 
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Bayesian Networks are often constructed and analyzed with computer software 

that represents network structure with a graphic display. Nodes are linked together via 

arcs within the graphical interface software in order to establish a number of relationships 

between them. The relationships between deterministic nodes (i.e., priors) are established 

in the conditional probability tables (CPTs). The conditional probability tables contain 

the likelihood of each outcome given the state of the variable in the parent node (Pollino 

2007b). For example, what is the probability of a large cobble substrate given high water 

velocity, medium water velocity, and low water velocity? In this case, the parent node 

would be water velocity and the outcome would be cobble size. Establishing the 

conditional probability tables is a critical point in developing the network, because these 

tables directly affect the outcome of a model. Fortunately, many computer software 

programs are capable of back-calculating CPTs based on known information of the 

variables states. 

There is a great deal of literature that identifies values for habitat variables that 

correlate with spring-run Chinook Salmon spawning in well-studied watersheds (Feist et 

al. 2003, Isaak et al. 2007, Lunnetta et al. 1997, Toepfer et al. 2000). These traits are 

often not stream specific, and can be generalized for use in other watersheds (e.g., water 

velocity, stream slope, water temperature, cover) to determine habitat quality for Chinook 

Salmon. These generic values can be used in network construction, along with any 

available empirical data available, such as escapement estimates (i.e., estimates of fish 

that successfully spawned, thereby “escaping” the fishery). In the most data poor 

watersheds, qualitative data collected through workshops and interviews with local 
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biologists can be incorporated to improve predictive performance of the model (Pollino et 

al. 2007a, Ticehurst et al. 2007) 

In addition to their ability to incorporate local expertise to supplement empirical 

data, Bayesian Networks are also easily updatable. The conditional probability tables can 

be updated as empirical research within the watershed becomes available to inform our 

understanding of the relationships between these habitat variables (Ticehurst et al. 2007). 

This is of particular importance within data poor watersheds. As populations of species 

recognized under the Federal or California Endangered Species Acts decline, as was 

recently the case with spring-run Chinook Salmon, habitats used by these species will 

become increasingly important. It is therefore likely that knowledge and data related to 

these habitats will increase. 

 This research used a combination of empirical data, data derived from literature, 

and geospatial data, to determine whether networks can reliably predict good and poor 

spawning habitat for Chinook Salmon in a Northern California Sacramento River 

tributary.  

Hypothesis 

 My hypothesis was that a Bayesian Network could be constructed to reliably 

predict habitat quality for Chinook Salmon spawning at a particular stream location. To 

test this hypothesis I developed a network that included habitat variables thought to be 

indicators of quality habitat (e.g., canopy cover, stream slope, existence of passage 

barriers) to determine the probability of suitable spawning habitat within a particular 
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subreach, as indicated by the likelihood of redd presence. As a means of validating the 

network, I used a sensitivity analysis to determine the influence that each of the variables 

included in the network had on model predictions. Additionally, to determine whether or 

not the model predicted the habitat quality accurately, I compared the mean number of 

redds per meter found in subreaches of Deer Creek determined by the model to be good 

spawning habitat versus the mean number of redds per meter found in subreaches of Deer 

Creek determined by the model to be poor spawning habitat. 
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METHODS 

 The general process used for applying the methodology is provided in Figure 1. 

This process includes collection of redd location data, snapping redd data to a streamline 

(i.e., aligning redd locations with streamlines within ArcGIS), collection of data to inform 

the input variables (e.g., stream slope, average width, etc.), network training, and 

validation. 

Location and Field Data Collection 

I collected redd location data from Deer Creek in Tehama County, California 

(Figure 2). Deer Creek represents one of three independent spring-run Chinook Salmon 

populations in the Central Valley (Lindley et al. 2007). There are also no major dams or 

reservoirs within the watershed to prevent fish passage, the presence of which would 

introduce a great deal of additional complexity to the model due to altered habitat 

selection resulting from confinement to lower-elevation reaches. 

I collected redd location data from late-September through the end of October in 

2012 and 2013 in the 12 km of Deer Creek immediately downstream of the upper limit to 

migration, namely Upper Deer Creek Falls, on three separate visits per season. Spring-

run Chinook Salmon generally spawn early in the fall from late-September through late-

October, with fall-run Chinook Salmon spawning further downstream and generally 

peaking in mid-October through November (Moyle 2002). By sampling during this 

period and limited to these upper reaches, I minimized the potential for misidentification 

of early fall-run Chinook Salmon redds as spring-run redds. I identified redds based on   
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Figure 1. Overview of the methodology. Green represents data collection/GIS work. 

Yellow represents construction of the network.  
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Figure 2. Location of Deer Creek, Tehama County, California. Study location is indicated 

by the black circle. 
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the standard clean gravel pot (i.e., depression within the substrate), with a tail of gravel 

excavated by the female during redd construction, and a redd size larger than other 

salmonids that may be spawning in the stream (Gallagher and Gallagher 2005). In 

addition, presence of females and males over suspected redd locations served as 

confirmation of spawning activity. I marked the location of each redd using coordinates 

from Trimble GeoXH handheld GPS with a Zephyr Model 2 external antenna, which 

yielded accuracy within 1 meter. I then entered this data into an Excel spreadsheet for the 

development of a GIS layer. 

 I split redd data into two independent datasets, each representing a 6 km reach of 

stream. I used one dataset during network training alone. I used the second dataset only 

during model validation, as suggested by Ames et al. (2005). However, due to the 

dispersion of redds being heavily skewed to the lower riffle-pool subreaches of the study 

area, splitting the data into two contiguous 6 km reaches for training and validation was 

impractical. Therefore, the training reach consisted of the uppermost 4 km of the study 

area and the lower 2 km of the study area. This allowed for the assessment of the 6 km 

contiguous reach between these two stream segments during model application and 

validation. By splitting the study area in this manner the total number of subreaches, as 

well as the number of subreaches containing redds, was more evenly dispersed between 

training and validation datasets (Table 1). 
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Table 1. Summary of redd presence for training and validation subreaches. 

        

Subreach Type With Redds Without Redds Total 

Training 21 52 73 

Validation 17 48 65 
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Creation of the Bayesian Network 

The software I used for creation of the Bayesian Network was Netica, by the Norsys 

Software Corporation. The freeware version of this software was adequate for this 

project. Benefits of this software are a user-friendly interface, pre-written algorithms for 

conducting sensitivity analysis, and helpful graphical display of the network. This 

software was designed specifically for the creation of Bayesian Networks and has been 

used previously in published works (Marcot et al. 2001, Pollino et al. 2007a, Pollino et al. 

2007b).  

Development of the Bayesian Network primarily followed the methods used in 

Pollino et al. (2007b). In all possible cases, I utilized data derived from GIS and site 

visits. For certain variables, comprehensive field surveys would have been cost or time 

prohibitive and data was not directly attainable from GIS for certain variables. For 

example, instream woody debris is generally surveyed by measuring diameter and 

number of pieces within the channel, using a GPS to place the locations within a GIS 

layer. This can be very time consuming and difficult, particularly in reaches confined 

within steep valley walls. However, the probability of woody debris within the channel 

may be implied from the percent of coniferous cover present adjacent to the stream. 

Coniferous cover can be determined from GIS layers of vegetative cover, as was done 

with this network.  

 I selected nodes based on an extensive literature search. There are a variety of 

habitat suitability models that have been developed for Chinook Salmon in the 
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Northwestern United States (Bartholow 2004, McHugh et al. 2004, Scheuerell et al. 

2006, Steel et al. 2009, Thompson and Lee 2000). Depending on scale, the most 

significant variables often differ. For example, on a microhabitat scale, water velocity, 

stream substrate, and depth are common variables, while at a macrohabitat scale (i.e., 

watershed scale) canopy cover is significant (Lunetta et al. 1997). However, the network 

also provided a means of incorporating multiple scales into the same model. Variables 

selected for incorporation into the Bayesian Network, along with justification for their 

selection, are provided in Table 2. 

Most of the nodes in the network were directly related to the output node, redd 

presence. However, to represent passage conditions during different water-year scenarios 

as designated on the California Data Exchange Center managed by the Department of 

Water Resources (http://cdec.water.ca.gov/), I incorporated an interaction between water-

year type and the existence of a partial barrier downstream into the network. This simple 

relationship was represented by dry water-years creating poor passage conditions when 

combined with a downstream partial barrier, in this case Lower Deer Creek Falls. During 

non-dry water-years passage conditions are good, as fish are able to pass the partial 

barrier with increased flows (Figure 3). 

GIS Data 

Baselayers. My first step in developing the model was establishing the base layers 

for the GIS portion of the model. The base layers include a digital elevation model 

(DEM), imagery from the National Agricultural Imagery Program (NAIP), and 
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Table 2. Variables included in the Bayesian Network with rationale for inclusion. 

    

Variable Rationale 

Average Width Knapp and Preisler (1999) found this was one of four 

predictors of spawning location. The three other 

predictors (substrate, velocity, and depth) would require 

extensive surveys, many of which are typically not 

available for data poor Northern California watersheds. 

Stream Slope Lunetta et al. (1997) and Montgomery and Buffington 

(1997) found that this could indicate geomorphic 

characteristics in a stream and thereby indicate quality 

of spawning habitat. Geist et al. (2000) found that slopes 

of less than 0.04 were suitable for salmon spawning. 

Mean Min 

Con_CFA(Mean Minimum 

Percent Coniferous Cover 

From Above) 

Lunetta et al. (1997) found that riparian vegetation 

within a 30m buffer of the streamline was an indicator 

of suitable habitat. Not only can this effect stream 

temperature, but LWD input that could trap smaller 

grain sizes appropriate for spawning in high velocity 

reaches. The mean of the minimum values of 

Coniferous Cover From Above, attained from FRAP 

data, were calculated for canyon walls on either side of 

the stream as an indicator of shading and LWD 

recruitment. 

Soil Type While this is likely not a good indicator of substrate 

itself, due to the source being general soil classification 

from USGS, it could be an indicator of input of fines 

that might affect nearby reaches or other undocumented 

effects of soil type. 

Water Year Type This is an indicator of whether the partial barrier is 

passable, partially blocking passage, or completely 

blocking passage. 

Partial Barrier While this is the state of upper Deer Creek, with Lower 

Deer Creek Falls being a partial barrier, it could be a 

common variable in many watersheds. 
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Figure 3. Structure of the Bayesian Network. Input variables are those manipulated to 

determine habitat quality in subreaches where the network will be applied to predict 

quality of habitat, as indicated by the probability of redd occurrence.   
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streamlines from the National Hydrology Dataset (NHD). In evaluating stream slope 

using GIS, stream alignment within the landscape is essential. Often times, due to the 

projection of a spherical earth onto a flat surface, streamlines on maps are not precisely 

where they occur in reality. Minimization of this distortion is necessary to increase 

accuracy. Neeson et al. (2008) found that, used in conjunction with calculations used to 

correct for outliers, a streamline that was created manually from georeferenced aerial 

imagery (i.e., traced) was more accurate than an NHD streamline when combined with a 

10 meter DEM for GIS calculation of stream slope. However, in a modeling context, 

rather than an independent assessment of the accuracy of stream slope derived from GIS, 

it was possible that a more accurate model would result from using the NHD file. 

Therefore, I assessed this model using two methods of determining gradient: 1) riffle-

pool subreach length using a traced streamline, and 2) riffle-pool subreach length using 

an NHD streamline. I defined riffle-pool subreaches as spanning from the upstream edge 

of a riffle or cascade to the lowest point in the adjacent pool downstream. The methods 

for creating these two files is further explained below. 

Other layers I used to assess the state of input variables within the model included 

vegetative cover from the California Department of Forestry and Fire Protection’s Fire 

and Resource Assessment Program (FRAP), United States Geological Survey (USGS) 

soil type, and road densities (Feist et al. 2003, Lunnetta et al. 1997, Toepfer et al. 2000). I 

excluded road densities from final analyses after determining that there were very few 

roads adjacent to the stream, and any effects of road networks on the stream itself would 

be very minor and likely not be measurable at a riffle-pool scale. After collecting and 
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processing GIS data, I entered values for each variable on a riffle-pool subreach scale 

into a case file for parameterization and validation of the Bayesian Network.  Where data 

were not available for prediction and validation, I used the “unknown” probability 

distribution created when training the network. 

Streamlines and subreach Designation. I obtained streamlines for the entire 12 

km study area using two methods. The first method was downloading a streamline from 

the NHD from the USGS (http://nhd.usgs.gov/data.html), and clipping the 12 km study 

area immediately downstream of Upper Deer Creek Falls. The second method for 

deriving a streamline was to trace georeferenced aerial imagery, called a digital 

orthographic quarter quad (DOQQ).  

In order to designate riffle-pool stream subreaches, I copied satellite imagery from 

Google Earth and georeferenced them in ArcGIS based on NAIP imagery. The purpose 

of this was that the satellite imagery used by Google Earth is a higher resolution 

(approximately 0.6 m resolution) compared to the NAIP imagery (1 m resolution). In 

addition the Google imagery has far less of the stream shadowed by trees. These two 

factors allow for more accurate designation of riffle-pool subreaches.  

Once the imagery was georeferenced and rectified, I created the streamline by 

tracing the imagery and creating successive segments with start and end vertices that 

correspond with the start and end of each riffle-pool subreach. I then extracted point 

features from the streamline using the Feature Vertices to Points tool. These points were 

then used in assigning stream subreach start and end points to the NHD file. 
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To assign riffle-pool subreach start and end points to the NHD file, a copy of the 

point file was snapped to the NHD streamline using the Near tool. The tool appends X 

and Y coordinates for the point on the designated line that is nearest the points in the 

original file to the original file’s attribute table. I then exported these coordinates to a new 

table, added them to the map, and exported them to a shapefile. Once I did this, the NHD 

streamline was split into riffle-pool subreaches using the Split Line at Point tool.  

 For each file, stream subreaches were numbered in consecutive order from 

upstream to downstream. 

Stream Gradient. In order to determine stream gradient, values from the DEM 

needed to be assigned to the start and end points of each subreach for each of the two 

streamlines. I did this using the Extract Values to Points tool in ArcGIS. This tool uses an 

input raster file and applies values from the raster to a specified point file. The output is a 

point file with a table that includes values from the raster, in this case elevation in meters. 

Once I did this, I exported the table to Microsoft Notepad, then opened it in Microsoft 

Excel to simplify calculation of the elevation change for each of the 138 riffle-pool 

stream segments. 

Stream lengths for riffle-pool subreach analysis were determined by first ensuring 

that the streamlines were in a projected coordinate system. A projected coordinate system 

identifies location based on coordinates (i.e., an x,y grid) from a surface that has been 

projected from a 3-dimensional object to a 2-dimensional plane. I then created a field in 

the attribute table of both streamline files, and using the Calculate Geometry function, the 
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length of each subreach segment in meters was automatically generated. Lengths were 

then transferred to the Excel file and percent gradient was determined by dividing the 

elevation change by the length of each segment. Gradient was a continuous variable, 

which I discretized within Netica as 4.0% or less (Suitable), between 4.0% and 6.5% 

(Marginal), and greater than 6.5% (Poor) (Lunetta et al. 1997, Montgomery and 

Buffington 1997, Geist et al. 2000).  

Training the Model 

Once the nodes of the Bayesian Network were established and relationships 

between the variables were developed, I parameterized the model (i.e., trained the 

network). Parameterization is a way of obtaining the conditional probability tables that 

yield the best predictive capability for the network based on known results, and begins 

with development of a case file. I developed two case files in Excel, one for the NHD 

derived streamline and one for the traced streamline, with each column heading 

corresponding with a node name and each row corresponding with a redd occurrence or 

absence. I entered values or states of each variable for each redd in the training portion of 

the dataset.  

In order to obtain the state of the variables for redd absence, I created an equal 

number of records representing subreaches containing no redds. I selected subreach 

numbers for subreaches containing no redds at random from the 6 kilometer training 

portion of the study area using Excel, and entered the state of each variable into the 

training dataset. If the state of a variable changed within the length of a subreach, I 
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selected the state of that variable randomly from the alternatives for inclusion in the case 

file. Once the two case files were established, I exported them into a .txt format for use in 

training the network within the Netica software (Figures 4 and 5). 

Three algorithms are provided in Netica for model parameterization: the Lauritzen 

Spielgalhalter method, the expectation maximization algorithm, and the gradient descent 

algorithm. I used the expectation maximization algorithm due to its ability to deal with 

possible gaps in the data that may arise, which is not true of the Lauritzen Spielgalhalter 

method, and lower susceptibility to local maxima than the gradient descendent algorithm 

(Pollino et al. 2007b). 

Model Validation 

 Validation is an important step in development of any model (Olden et al. 2002). 

The more accurately a model is able to represent reality, the more applicable it will be to 

restoration and scientific understanding of a system. I employed two methods to evaluate 

the networks ability to predict redd occurrence, namely sensitivity analysis and 

comparison with actual field data. 

As a preliminary evaluation of the network I conducted a sensitivity analysis, 

which is commonly used with Bayesian Networks (Ames et al. 2005, Coupé and van der 

Gaag 2002, Pollino et al. 2007a, Pollino et al. 2007b). There were two separate training 

files, the NHD streamline and the traced streamline. Therefore, I ran two sensitivity 

analyses, one for each training file.  Essentially, this analysis manipulates each



 

 

 

 

 

 

Figure 4. NHD network following training with the case file.
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Figure 5. Traced network following training with the case file.
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parameter or CPT individually either manually or via an algorithm and resulting changes 

in the output variable are observed (Coupé and van der Gaag 2002). In this manner, 

variables having an unexpected or disproportional effect on the outcome can be 

identified; thereby identifying potential issues in the CPTs.  

I conducted the sensitivity analysis within the Netica software by running 

“Sensitivity to Findings” on the query variable. Results of this sensitivity analysis are 

presented as “mutual information,” also known as entropy reduction value, which 

indicates the degree to which each variable is related to the query variable. Entropy can 

be defined as the uncertainty of a variable (Pollino et al. 2007b) and is calculated based 

on the probability distribution of that variable. The lower the calculated entropy, the more 

predictable, or non-random, a variable is. Mutual information builds on this by reducing 

the calculated entropy of one variable, H(T), by the entropy of that variable given 

additional information from another variable, noted H(T|X) below. In this example the 

less random T is, given information from X, the smaller H(T|X) will be (i.e., lower 

entropy). Therefore, the mutual information value, I(T,X), is larger and indicates more 

influence of X on the predictability of T. Conversely, the nearer I(T,X) is to 0, the less 

influence X has on the predictability of T (Pearl 1988). 

 𝐼(𝑇, 𝑋) = 𝐻(𝑇) − 𝐻(𝑇|𝑋) 

As a second investigation into the legitimacy of the results, I compared the redd 

data collected in areas designated by the network as good (>50% likelihood of redd 

presence) and poor (≤50% likelihood of redd presence), using a One-Way ANOVA 
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analysis with grouping information using the Tukey method in Minitab 16. I did this for 

four scenarios: using the NHD streamline under dry water-year conditions (NHDD), 

using the NHD streamline under non-dry water-year conditions (NHDND), using the 

traced streamline under dry water-year conditions (TRD), and using the traced streamline 

under non-dry water-year conditions (TRND). By evaluating dry and not-dry water-year 

conditions in both networks, I hoped to identify the effect of passage condition on the 

probability of redd occurrence beyond the partial barrier. If the mean redd density, 

expressed as redds per meter, was significantly lower in the habitats predicted by the 

model to be poor this could be an indicator of better predictive capabilities of the 

network. If there was no significant difference in the redd density between sites predicted 

to be good versus poor, this would indicate either a lack of suitability of the model for 

this application, an issue with selection of variables, or a problem with the conditional 

probability tables. 
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RESULTS 

 Each of the four scenarios resulted in a slightly different number of subreaches 

designated as good and poor (Table 3, Figures 6-9). The NHD streamline under not-dry 

conditions predicted more subreaches with good salmon spawning habitat than the traced 

streamline under not-dry conditions. Using the dry water-year scenario, both the NHD 

and traced streamline networks predicted a great deal fewer subreaches with good salmon 

spawning habitat than the non-dry water-year scenario due to inaccessibility of habitat 

upstream of the partial barrier. 

The NHD streamline had no gradients of 6% or greater, being comprised largely 

of gradients of 4.0% or less and 4.0-6.5%. However, the traced streamline contained 

more variability in stream slope designation than the NHD streamline, with some 

subreaches falling into the 6% or greater category. This additional state of the stream 

slope variable required the inclusion of a 6% or greater condition to the node in the NHD 

network, in order to train the network appropriately. Corrective factors to limit the 

influence of outliers following methods in Neeson et al. (2008) had no effect on 

classification of the stream gradient.  

Sensitivity Analysis 

 The output, Redd Presence, of the network trained with the case file for the NHD 

streamline was influenced most by mean minimum coniferous cover from above (Mean 

Min Con_CFA), followed by soil type and average stream width. However, the output for  
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Table 3. Subreach designations according to the Bayesian Network. Good represents 

greater than 50% likelihood that redds are present and poor represents a 50% or less 

likelihood that redds are present.  

      

Scenario Good Poor 

NHD Streamline-Dry Water Year 6 58 

NHD Streamline-Non-Dry Water Year 23 41 

Traced Streamline-Dry Water Year 14 50 

Traced Streamline-Non-Dry Water Year 32 32 
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Figure 6. Results of the Bayesian Network for the NHDD scenario. Black represents 

training subreaches, green represents greater than 50% probability of redd occurrence, 

and red represents 50% or less probability of redd occurrence.  
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Figure 7. Results of the Bayesian Network for the NHDND scenario. Black represents 

training subreaches, green represents greater than 50% probability of redd occurrence, 

and red represents 50% or less probability of redd occurrence.  
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Figure 8. Results of the Bayesian Network for the TRD scenario. Black represents 

training subreaches, green represents greater than 50% probability of redd occurrence, 

and red represents 50% or less probability of redd occurrence.  
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Figure 9. Results of the Bayesian Network for the TRND scenario. Black represents 

training subreaches, green represents greater than 50% probability of redd occurrence, 

and red represents 50% or less probability of redd occurrence. 
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the network trained with the case file for the traced streamline was influenced most by 

soil type, followed by average stream width and passage conditions. The primary 

difference between the two networks is that the NHD network showed mean coniferous 

cover from above as the primary influence on the output, and the traced streamline 

network showed mean coniferous cover as having the least influence over the output 

(Tables 4-5, Figure 10). 

Analysis of Variance 

The ANOVA analysis showed three of the four scenarios as indicating a significantly 

higher mean redd density for those subreaches designated as good: the NHD streamline 

under dry water-year conditions (P < 0.001), the traced streamline under drywater-year 

conditions (P < 0.000), and the traced streamline under non-dry water-year conditions (P 

= 0.002). The other scenario, NHD streamline under non-dry water-years, showed no 

significant difference (P = 0.631) between subreaches designated as good versus those 

designated as poor (Figure 11, Table 6). This is also reflected in the eta squared  (η
2
) 

value. According to Cohen’s (1988) guidelines, the three well performing scenarios had 

η
2
 values indicating a large effect size (η

2 
= 0.268, η

2 
= 0.588, and η

2 
= 0.143, 

respectively), with small effect size being evident only in the single poorly performing 

NHD under not-dry water-year scenario (η
2
 = 0.004).  
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Table 4. Mutual Information (i.e., Entropy Reduction Values) for effect of each variable 

on the output in the network compiled using the NHD streamline case file for training. 

The higher the Mutual Information value, the more influence that node has on the output 

node, Redd Present (yes or no). 

 

Node Mutual Information Variance of Beliefs 

Redd Present 0.994 0.248 

Mean Min Con_CFA 0.035 0.012 

SoilType 0.027 0.009 

Average Width 0.025 0.008 

Passage Conditions 0.016 0.005 

Water Year Type 0.006 0.002 

Partial Barrier Dwnstr 0.005 0.002 

Stream Slope 0.000 0.000 
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Table 5. Mutual Information (i.e., Entropy Reduction Values) for effect of each variable 

on the output in the network compiled using the traced streamline case file for training. 

The higher the Mutual Information value, the more influence that node has on the output 

node, Redd Present (yes or no). 

 

Node Mutual Information Variance of Beliefs 

Redd Present 0.988 0.246 

SoilType 0.155 0.048 

Average Width 0.117 0.036 

Passage Conditions 0.060 0.019 

Water Year Type 0.020 0.007 

Partial Barrier Dwnstr 0.018 0.006 

Stream Slope 0.002 0.001 

Mean Min Con_CFA 0.000 0.000 

 



 

 

 

 

 

 
 

Figure 10. Graph of mutual information for the effect of each variable on the output in the network compiled with the 

NHD streamline (a) and the network compiled with the traced streamline (b). Larger bars represent more influence on 

the output variable under each network. Note the difference in scale between the two figures.
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Figure 11. Comparison of redd densities between subreaches designated as good or poor by the Bayesian Network; (a) NHD 

under Dry Conditions, (b) NHD under not dry conditions, (c) traced streamline under dry conditions, and (d) traced streamlines 

under not dry conditions. Asterisks are values at least 1.5 times the interquartile range beyond the edge of the box. Crosshairs 

represent the mean.
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Table 6. ANOVA (One-Way) summary for comparison of redd densities in subreaches 

designated as good and poor by the Bayesian Network for the four scenarios; NHD 

streamlines under dry conditions (NHDD), NHD under not-dry conditions (NHDND), 

traced streamlines under dry conditions (TRD), and traced streamlines under not-dry 

conditions. DF = degrees of freedom, SS = sum of squares, MS = mean sum of squares, η
2 

= eta squared).   

 

ANOVA           

 Source DF SS MS F P η
2
 

NHDD 1 0.008 0.008 22.71 < 0.001 0.268 

Error 62 0.021 0.000 

   Total 63 0.028         

NHDND 1 0.000 0.000 0.23 0.631 0.004 

Error 62 0.028 0.000 

   Total 63 0.028         

TRD 1 0.016 0.016 88.64 < 0.001 0.588 

Error 62 0.011 0.000 

   Total 63 0.028         

TRND 1 0.004 0.004 10.38 0.002 0.143 

Error 62 0.024 0.000 

   Total 63 0.028         
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DISCUSSION 

Based on the predictive ability of the traced streamline network under both dry 

and not-dry conditions, my results indicate that Bayesian Networks can predict habitat 

suitability and guide restoration for Chinook Salmon spawning habitat within data-poor 

watersheds. Studying spawning behavior of Chinook Salmon poses many difficult 

challenges. The limited duration of spawning activity and the annual nature of spawning 

make long-term monitoring preferable; however, time and cost can be an issue and 

monitoring of one stream must often be prioritized over monitoring of another (Williams 

2006). Additional difficulties include feasibility of monitoring across different life-

history stages and difficult access to spawning sites hindering data collection.  

A great deal of published literature is dedicated to quantifying suitability of 

Chinook Salmon spawning habitat variables when more extensive data collection is 

feasible (Feist et al. 2003, Geist and Dauble 1998, Isaak et al. 2007, Lunnetta et al. 1997, 

Toepfer et al. 2000). While stream-specific classifications of habitat suitability regularly 

outperform generalized criteria, generalized criteria derived from the literature may still 

provide adequate results (McHugh and Budy 2004, Mäki-Petäys et al. 2002). However, 

predictive modeling based on these generalized criteria, even when generalization is 

sufficient, is confounded in some streams because empirical data for stream 

characterization may be sparse. The time and cost constraints mentioned by Williams 

(2006) impact scientists’ ability to gather extensive data to remedy this issue, and it is 

under these conditions that the utility of Bayesian Networks becomes apparent. By 
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providing a nexus between qualitative and quantitative data, the ability to combine 

variables of different scales and classifications (e.g., physical habitat data, biological 

data, and behavioral data), and by explicitly accounting for uncertainty, Bayesian 

Networks can be used where it would be difficult to apply models requiring more 

extensive field data (Bartholow 2004, Lichatowich et al. 1995, Steel et al. 2009).  

Predictive Capabilities of Model 

  Three of the model scenarios, the NHD streamline under dry conditions (NHDD), 

the traced streamline under dry conditions (TRD), and the traced streamline under not-

dry conditions (TRND), showed a significant difference between subreaches designated 

as good versus poor Chinook Spawning habitat by the network. In all three of these 

scenarios mean number of redds per meter was higher in the subreaches designated good, 

which supports the hypothesis that Bayesian Networks can be designed to predict 

suitability of spawning habitat for Chinook Salmon.  

However, one of the scenarios, the NHD streamline under not-dry conditions 

(NHDND), showed no significant difference between the two designations. This scenario 

overestimated the amount of good habitat. Based on the sensitivity analysis, “Passage 

Conditions” appears to have a substantial effect on both NHD and traced streamline 

networks. Given that even during the not-dry water year (2012) spawning upstream of 

Lower Deer Creek Falls was limited, the passage barrier influence made both networks 

appear to predict habitat suitability well under dry water-years.  However, two factors 

may have affected the predictive abilities of the NHDND scenario. Low mutual 



39 

 

 

 

 

information values for all variables in the NHDND scenario (0.035 or lower) indicate 

little overall improvement in prediction of redd occurrence given information about the 

state of the variables. Also, the difference in influence of mean minimum coniferous 

cover from above may account for why the NHDND scenario had a much smaller effect 

size (η
2
 = 0.004) than traced not-dry scenario (n

2
 = 0.143), indicating poorer 

performance. Lunetta et al. (1997) used coniferous cover as an indicator of large woody 

debris recruitment potential, but the relationship in the NHD network seems poorly 

represented and the heavy influence of coniferous cover may have negatively affected the 

accuracy of this network. While the NHDD showed significant difference between good 

and poor habitat, it appears that this difference was an artifact of the partial passage 

barrier rather than the overall performance of the network trained using the NHD 

streamlines. 

Models are often assessed using iterative resampling processes to assess 

frequency of correct predictions (Olden 2002). However, Borsuk et al. (2004) point out 

how common means of testing deterministic models are not as applicable to the 

probabilistic Bayesian Networks. While not a common means of validation, my 

assessment of model results using a simple ANOVA, in combination with the standard 

sensitivity analysis, provided a rapid and useful indication of how well the networks 

predicted habitat quality. The ANOVA analyses also informed my assessment of the 

effect of the partial passage barrier under each network (NHD streamline and traced 

streamline) on model results. Of the two networks, the traced streamline predicted good 

and poor spawning habitat, as reflected by differences in redd density, more accurately 
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when subreach classifications were compared using field data from the validation 

subreaches. 

Network Structure and Parameterization 

Determining the structure of the Bayesian Network is a critical step in creating a 

network that will yield the desired information. In a large-scale collaborative setting, 

network development can be a lengthy process. Often structure is dictated not only by 

desired network outputs, but agreement among scientists and stakeholders upon what 

suite of variables should be included (Borsuk et al. 2004, Bromley et al. 2005). Williams 

(2006) suggests that simpler models are preferable to those containing what may be 

“unnecessary complexity.” In this case, I intentionally kept the network simplistic, in 

order to determine if I could obtain a useful output with limited time and resources that 

may be encountered in data-poor Northern California watersheds. Even working within 

this limited framework, a number of considerations had to be taken into account during 

network construction and parameterization. 

While constructing the network, it is important to consider that the state of each 

node within the network must be available for use in the case file, whether based on 

professional judgment or empirical data. Although the expectation maximization 

algorithm used in my network is resilient to lack of data (Pollino et al. 2007b), some data 

is still necessary for the software to back-calculate probabilities for the conditional 

probability tables. I considered other intermediate variables for inclusion in the network 

that would have been directly tied to microhabitat features, such as large wood 
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recruitment and recruitment of fine sediment; however, without extensive field surveys it 

would be impossible to include a meaningful state of these variables in the case file. 

Ultimately, these variables were omitted because it was not feasible to conduct these 

surveys. Temperature, another important indicator of spawning habitat quality (Bell 

1986, Bjornn and Reiser 1991), was also omitted because suitable temperatures for 

Chinook Salmon spawning were found throughout the entire study area. 

Discretization of variables proved challenging as well. Continuous variables must 

be broken into discrete ranges in order to parameterize and run the network. However, 

discretization is often dependent upon professional judgment (Uusitalo 2007). While 

ranges for variables such as gradient can be justified based on available literature (Geist 

et al. 2000, Lunetta et al. 1997, Montgomery and Buffington 1997), assigning ranges for 

variables like average stream width and percent coniferous cover are much more 

qualitative in nature. This can have an effect on model performance and, if a similar 

network were applied in a public planning framework, this could lead to a higher degree 

of scrutiny. 

In addition, by breaking an otherwise continuous variable into discrete 

classifications, subtle inaccuracies in the model may have been disguised. For example, 

Neeson et al. (2008) determined that accuracy of GIS derived stream gradient improved 

when they corrected for outliers, muting the effects of the highest and lowest values 

derived from the DEM. However, the corrective calculation used in their work did not 

work well in my network, resulting in no change in classification of stream slope. 
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As with stream slope, mean minimum coniferous cover was included in my 

network as an indicator of geomorphic characteristics. Lunnetta et al. (1997) found that 

the combination of stream slope and coniferous cover predicted habitat quality that was 

consistent with independent field surveys, at least when qualitatively compared. 

However, the results of the sensitivity analysis seemed to indicate that neither of these 

contributed much to the network trained with the traced streamline, which performed 

well. The low contribution of stream slope (mutual information = 0.002) could be due to 

inaccuracies related to the GIS derived gradient, masking of subtle differences due to 

discretization, or a combination of the two. The low contribution of mean minimum 

coniferous cover from above (mutual information < 0.001) may have been due to a lack 

of age of coniferous growth as a component of the variable. Seral stage data used by 

Lunetta et al. (1997) was a combination of age and percent coniferous cover. Therefore, 

seral stage rather than coniferous cover alone likely better characterized potential for the 

large wood recruitment that is beneficial to Chinook Salmon spawning habitat (Fausch 

and Northcote 1992, Merz 2001). 

Soil type and average stream width had the most effect on redd presence 

predictions in the traced streamline trained network, with mutual information values of 

0.155 and 0.177, respectively. Soil type, as classified by USGS, may be an indicator of 

the erosion potential of adjacent stream slopes and thereby account for potential 

contribution of fines. Large proportions of fine material (i.e., fines) in stream substrates 

has been shown to have a negative effect on redd presence and rearing juveniles (Sommer 

et al. 2001, Suttle et al. 2004), but is unclear whether this or other unknown correlations 
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between soil type and habitat condition are responsible for the large influence within the 

network. Knapp and Preisler (1998) found stream width explained significant variation in 

Golden Trout spawning site selection. They were unable to account specifically for why 

this relationship existed. However, they note that other indicators of quality spawning 

habitat such as appropriate velocity, substrate, and depth were more common in wider 

reaches (Gallagher and Gard 1999, Geist and Dauble 1998, Shirvell 1989), which could 

also account for the influence on my network. Due to the extensive surveying associated 

with direct quantification of velocity, substrate, and depth throughout the study area, I did 

not explicitly account for these variables in this network.  

Model Limitations 

Schnute (2003) points out that modeling can serve to focus conservation efforts 

and monitoring, provided each model’s limitations are clearly stated. The traced 

streamline network reliably predicted good and poor habitats, but the utility of the 

network to identify specific bottlenecks was questionable. This may be due to the 

probability distributions of individual parent nodes (i.e., input variable conditions) 

calculated by the network being poor representations of reality, but ultimately leading to 

better prediction of redd occurrence. This reinforces the notion that models, while not 

necessarily an accurate representation of nature (Pollino et al. 2007a, Schnute 2003, 

Williams 2006), are still useful. In the context of this model, it was more important to 

identify the presence and absence of redds than to identify exactly which variable is 

responsible for this result. In this way, the traced streamline model retains its utility in 
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directing restoration efforts, with more detailed evaluation of each individual variable 

being reserved for more focused microhabitat studies. However, this is a limitation to 

model application within a restoration context. 

A second limitation to Bayesian Networks is the difficulty in validating the 

model. As mentioned, validation cannot be conducted using traditional statistical methods 

(Borsuk et al. 2004). Rather, sensitivity analyses are commonly relied upon to determine 

reliability of the output (Coupé and van der Gaag 2002, Stewart-Koster et al. 2010).  The 

accuracy of modeled predictions may be less clear using sensitivity analysis rather than 

the more commonly applied techniques (e.g., iterative methods such as bootstrapping), 

and results may be called into question in planning scenarios.  

However, despite this limitation, Bayesian Networks do show promise for use in 

guiding fisheries management. Expression of outcomes in these networks as likelihood of 

occurrence provides a clear measure of uncertainty, and the ability to incorporate effects 

of variables that may not be explicitly measured (e.g., soil type as designated by USGS) 

provides flexibility not available in other models (Clark 2005, Ellison 2004). Therefore, 

future research into their applicability to fisheries management is justified.  

Suggestions for Future Research  

Reach Length. For my initial investigation into the predictive abilities of Bayesian 

Networks I elected to assess riffle-pool subreach length, designated using aerial imagery. 

However, Neeson et al. (2008) indicated that there was an increase in accuracy of Digital 

Elevation Model (DEM) derived stream gradient using longer reaches. Their results seem 
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to indicate an increase in accuracy using 10 meter DEMs and National Hydrography 

Dataset (NHD) or traced streamlines up to approximately 800 meters, at which point the 

benefits of increasing reach length diminished. Using the 800-meter length, which was 

considerably longer than any of my riffle-pool subreaches, would have yielded only 15 

reaches within my 12 kilometer study area. This would have posed problems, including 

too few reaches for comparing predicted probability of redd occurrence to actual 

densities, and difficulties in splitting data for training and validation. However, if the 

study area were long enough to provide an adequate number of 800-meter reaches, the 

accuracy of GIS derived gradient, and therefore modeled results, could be improved. 

Microhabitat Variables. Microhabitat variables, such as substrate size, velocity, 

and depth, are commonly associated with Chinook Salmon spawning habitat preference 

(Gallagher and Gard 1999, Geist and Dauble 1998). Incorporation of these variables, 

while likely requiring time intensive sampling, would likely increase the accuracy of 

model predictions. This is somewhat counter to the idea of a rapid assessment in a data 

poor environment, and was therefore not included in this assessment. Inclusion in future 

use of networks similar to this, where this data is either available or in venues where this 

data is more attainable due to fewer budgetary and time constraints, is recommended.  

Expansion into a life-cycle type model. The focus of this network was the 

spawning life stage of spring-run Chinook Salmon. However, Lindley et al. (2007) 

mention that Central Valley Chinook Salmon historic rearing habitat is also largely 

inaccessible. While a Bayesian Network is likely not the best tool for predicting 
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population size, expansion into a framework similar to a full life-cycle model should be 

done to understand how habitat quality is affecting Chinook Salmon throughout their life-

history. One method for doing so would be to essentially develop a number of different 

habitat sub-models, corresponding with life-stage, which are then related to overall 

productivity. The structure would be similar to the network created by Pollino et al. 

(2007b), though the specific nodes would differ. In this way, the habitats encountered by 

Chinook Salmon originating from a particular watershed could be assessed throughout 

the life-history and particularly influential points of habitat degradation could be 

addressed. 

Conclusion  

Based on my research, Bayesian Networks show promise as a potential tool for 

guiding restoration efforts in Northern California watersheds. They are able to 

incorporate various types of data, provide a means of dealing with uncertainty, and 

networks can be updated relatively quickly and efficiently. In addition to these traits, 

open source software for creation of these networks is readily available, broadening its 

applicability to agencies or organizations that may not have the resources to pay for 

development of proprietary models in watersheds of interest. Due to drastic reductions in 

historic cold water spawning and holding habitat for spring-run Chinook Salmon 

(Yoshiyama et al. 2001) it is essential that the quality of the habitat available to these fish 

is maximized. It is also important that in our efforts to conserve native populations in 

rapid decline, such as Chinook Salmon, we assess as many tools at our disposal as 
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possible. Bayesian Networks are one additional tool that warrants further consideration in 

the conservation of California’s native fishes. 
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APPENDIX A 

 

Case File for Network Using NHD Streamline 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

1 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

2 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

3 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

4 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

5 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

6 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

7 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

8 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

9 8.24 Suitable 0.35 MkE Yes NotDry Good Yes 

10 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

11 11.85 Suitable 0.1 RtF No NotDry Good Yes 

12 14.74 Suitable 0.5 NoF No NotDry Good Yes 

13 10.71 Suitable 0.55 MkE No NotDry Good Yes 

14 14.74 Suitable 0.5 NoF No NotDry Good Yes 

15 12.15 Suitable 0.55 MkE No NotDry Good Yes 

16 14.95 Suitable 0.75 CdD No NotDry Good Yes 

17 14.95 Suitable 0.75 CdD No NotDry Good Yes 

18 11.3 Suitable 0.8 CdD No NotDry Good Yes 

19 13.7 Suitable 0.8 CdD No NotDry Good Yes 

20 11.3 Suitable 0.8 CdD No NotDry Good Yes 
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Appendix A. Continued 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

21 13.7 Suitable 0.8 CdD No NotDry Good Yes 

22 13.7 Suitable 0.8 CdD No NotDry Good Yes 

23 13.7 Suitable 0.8 CdD No NotDry Good Yes 

24 13.7 Suitable 0.8 CdD No NotDry Good Yes 

25 13.7 Suitable 0.8 CdD No NotDry Good Yes 

26 13.7 Suitable 0.8 CdD No NotDry Good Yes 

27 11.93 Suitable 0.8 MkE No NotDry Good Yes 

28 11.93 Suitable 0.8 MkE No NotDry Good Yes 

29 12.45 Suitable 0.4 MkE No NotDry Good Yes 

30 12.45 Suitable 0.4 MkE No NotDry Good Yes 

31 12.19 Suitable 0.75 MmF No NotDry Good Yes 

32 12.19 Suitable 0.75 MmF No NotDry Good Yes 

33 10.63 Suitable 0.75 MmF No NotDry Good Yes 

34 10.63 Suitable 0.75 MmF No NotDry Good Yes 

35 13.87 Suitable 0.75 MmF No NotDry Good Yes 

36 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

37 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

38 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

39 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

40 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

41 15.66 Marginal 0.45 MkE Yes NotDry Good Yes 

42 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 
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Appendix A. Continued 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

43 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

44 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

45 11.43 Suitable 0.35 MmE Yes NotDry Good Yes 

46 11.85 Suitable 0.1 RtF No NotDry Good Yes 

47 14.95 Suitable 0.75 CdD No NotDry Good Yes 

48 14.95 Suitable 0.75 CdD No NotDry Good Yes 

49 13.7 Suitable 0.8 CdD No NotDry Good Yes 

50 13.7 Suitable 0.8 CdD No NotDry Good Yes 

51 11.93 Suitable 0.8 MkE No NotDry Good Yes 

52 11.93 Suitable 0.8 MkE No NotDry Good Yes 

53 11.85 Suitable 0.1 RtF No Dry Good Yes 

54 12.4 Suitable 0.4 MkE No Dry Good Yes 

55 12.4 Suitable 0.4 MkE No Dry Good Yes 

56 12.4 Suitable 0.4 MkE No Dry Good Yes 

57 12.4 Suitable 0.4 MkE No Dry Good Yes 

58 12.45 Suitable 0.4 MkE No Dry Good Yes 

59 12.4 Suitable 0.25 MkE No Dry Good Yes 

60 12.45 Suitable 0.4 MkE No Dry Good Yes 

61 12.45 Suitable 0.4 MkE No Dry Good Yes 

62 12.45 Suitable 0.4 MkE No Dry Good Yes 

63 12.45 Suitable 0.8 MkE No Dry Good Yes 

64 11.93 Suitable 0.8 CdD No Dry Good Yes 
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Appendix A. Continued 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

65 11.93 Suitable 0.8 CdD No Dry Good Yes 

66 11.93 Suitable 0.8 CdD No Dry Good Yes 

67 11.93 Suitable 0.8 CdD No Dry Good Yes 

68 15.32 Suitable 0.8 CdD No Dry Good Yes 

69 15.32 Suitable 0.8 CdD No Dry Good Yes 

70 15.32 Suitable 0.8 CdD No Dry Good Yes 

71 13.7 Suitable 0.8 CdD No Dry Good Yes 

72 13.7 Suitable 0.8 CdD No Dry Good Yes 

73 13.7 Suitable 0.8 CdD No Dry Good Yes 

74 13.7 Suitable 0.8 CdD No Dry Good Yes 

75 13.7 Suitable 0.8 CdD No Dry Good Yes 

76 13.7 Suitable 0.8 CdD No Dry Good Yes 

77 13.7 Suitable 0.8 CdD No Dry Good Yes 

78 13.7 Suitable 0.8 CdD No Dry Good Yes 

79 13.7 Suitable 0.8 CdD No Dry Good Yes 

80 13.7 Suitable 0.8 CdD No Dry Good Yes 

81 11.3 Suitable 0.8 CdD No Dry Good Yes 

82 10.13 Suitable 0.75 CdD No Dry Good Yes 

83 14.95 Suitable 0.75 CdD No Dry Good Yes 

84 14.95 Suitable 0.75 CdD No Dry Good Yes 

85 14.95 Suitable 0.75 CdD No Dry Good Yes 

86 14.95 Suitable 0.75 CdD No Dry Good Yes 
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Appendix A. Continued 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

87 14.95 Suitable 0.75 CdD No Dry Good Yes 

88 14.95 Suitable 0.75 CdD No Dry Good Yes 

89 14.95 Suitable 0.75 CdD No Dry Good Yes 

90 14.95 Suitable 0.75 CdD No Dry Good Yes 

91 14.95 Suitable 0.75 CdD No Dry Good Yes 

92 14.95 Suitable 0.75 CdD No Dry Good Yes 

93 13.55 Suitable 0.75 MmF No Dry Good Yes 

94 12.4 Suitable 0.55 IrF No Dry Good Yes 

95 10.45 Suitable 0.55 MkE No Dry Good Yes 

96 11.06 Suitable 0.55 MkE No Dry Good Yes 

97 10.71 Suitable 0.55 MkE No Dry Good Yes 

98 10.71 Suitable 0.55 MkE No Dry Good Yes 

99 10.71 Suitable 0.55 MkE No Dry Good Yes 

100 10.71 Suitable 0.55 MkE No Dry Good Yes 

101 13.16 Suitable 0.55 MkE No Dry Good Yes 

102 13.16 Suitable 0.55 MkE No Dry Good Yes 

103 13.16 Suitable 0.55 MkE No Dry Good Yes 

104 13.16 Suitable 0.55 MkE No Dry Good Yes 

105 13.16 Suitable 0.55 MkE No Dry Good Yes 

106 13.16 Suitable 0.55 MkE No Dry Good Yes 

107 12.31 Suitable 0.25 MkE No Dry Good No 

108 12.31 Suitable 0.25 MkE No NotDry Good No 
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Appendix A. Continued 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

109 9.69 Suitable 0.65 MmF No NotDry Good No 

110 9.94 Suitable 0.65 MmF No NotDry Good No 

111 9.94 Suitable 0.65 MmF No Dry Good No 

112 10.66 Suitable 0.65 MmF No Dry Good No 

113 10.66 Suitable 0.65 MmF No NotDry Good No 

114 10.66 Suitable 0.65 MmF No NotDry Good No 

115 10.66 Suitable 0.65 MmF No NotDry Good No 

116 10.66 Suitable 0.65 MmF No NotDry Good No 

117 11.31 Suitable 0.65 MmF No NotDry Good No 

118 11.31 Suitable 0.65 MmF No NotDry Good No 

119 11.31 Suitable 0.65 MmF No NotDry Good No 

120 12.31 Suitable 0.65 MmF No Dry Good No 

121 12.31 Suitable 0.65 MmF No Dry Good No 

122 12.31 Suitable 0.65 MmF No Dry Good No 

123 9.13 Suitable 0.55 MkE Yes NotDry Good No 

124 9.13 Suitable 0.55 MkE Yes NotDry Good No 

125 9.13 Suitable 0.55 MkE Yes Dry Poor No 

126 10.05 Suitable 0.55 MkE Yes NotDry Good No 

127 10.05 Suitable 0.55 MkE Yes NotDry Good No 

128 10.05 Suitable 0.55 MkE Yes NotDry Good No 

129 10.11 Suitable 0.55 MkE Yes NotDry Good No 

130 9.05 Suitable 0.55 IrF Yes NotDry Good No 
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Appendix A. Continued 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

131 9.05 Suitable 0.55 MkE Yes Dry Poor No 

132 9.05 Suitable 0.55 IrF Yes NotDry Good No 

133 9.05 Suitable 0.55 MkE Yes Dry Poor No 

134 7.56 Suitable 0.55 MkE Yes Dry Poor No 

135 10 Suitable 0.55 MkE Yes Dry Poor No 

136 10 Suitable 0.55 MkE Yes NotDry Good No 

137 7.79 Suitable 0.55 MkE Yes NotDry Good No 

138 7.79 Suitable 0.55 MkE Yes Dry Poor No 

139 11.61 Suitable 0.40 MkE Yes Dry Poor No 

140 9.04 Suitable 0.45 MkE Yes Dry Poor No 

141 9.04 Suitable 0.45 MkE Yes NotDry Good No 

142 9.04 Suitable 0.45 MkE Yes Dry Poor No 

143 8.61 Suitable 0.45 MkE Yes Dry Poor No 

144 9.42 Suitable 0.45 MkE Yes Dry Poor No 

145 9.42 Suitable 0.45 MkE Yes NotDry Good No 

146 8.7 Suitable 0.65 MkE Yes NotDry Good No 

147 8.7 Suitable 0.65 MkE Yes NotDry Good No 

148 9.56 Suitable 0.65 MkE Yes Dry Poor No 

149 9.56 Suitable 0.65 MkE Yes NotDry Good No 

150 9.56 Suitable 0.65 MkE Yes NotDry Good No 

151 9.56 Suitable 0.65 MkE Yes NotDry Good No 

152 9.56 Suitable 0.65 MkE Yes NotDry Good No 
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Appendix A. Continued 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

153 12.41 Suitable 0.55 MkE Yes Dry Poor No 

154 12.41 Suitable 0.65 MkE Yes Dry Poor No 

155 12.41 Suitable 0.55 MkE Yes NotDry Good No 

156 12.41 Suitable 0.65 MkE Yes Dry Poor No 

157 10.27 Suitable 0.55 MkE Yes NotDry Good No 

158 10.27 Suitable 0.55 MkE Yes NotDry Good No 

159 10.27 Suitable 0.55 MkE Yes Dry Poor No 

160 8.29 Suitable 0.55 MkE Yes Dry Poor No 

161 8.29 Suitable 0.55 MkE Yes Dry Poor No 

162 13.83 Suitable 0.45 MkE Yes NotDry Good No 

163 13.83 Suitable 0.45 MkE Yes NotDry Good No 

164 14.11 Suitable 0.4 MmE Yes NotDry Good No 

165 14.11 Suitable 0.40 MmE Yes NotDry Good No 

166 14.62 Suitable 0.55 MmE Yes Dry Poor No 

167 14.62 Suitable 0.55 MmE Yes NotDry Good No 

168 10.99 Suitable 0.35 MmE Yes Dry Poor No 

169 10.99 Suitable 0.35 MmE Yes NotDry Good No 

170 10.36 Suitable 0.25 MmE Yes Dry Poor No 

171 10.36 Suitable 0.25 MmE Yes NotDry Good No 

172 10.42 Suitable 0.25 MmE Yes Dry Poor No 

173 10.42 Suitable 0.25 MmE Yes Dry Poor No 

174 10.42 Suitable 0.25 MmE Yes NotDry Good No 
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Appendix A. Continued 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

175 10.42 Suitable 0.25 MmE Yes NotDry Good No 

176 10.42 Suitable 0.25 MmE Yes Dry Poor No 

177 10.42 Suitable 0.25 MmE Yes NotDry Good No 

178 6.85 Suitable 0.45 MmE Yes Dry Poor No 

179 6.85 Suitable 0.45 MmE Yes NotDry Good No 

180 7.55 Suitable 0.25 MmE Yes Dry Poor No 

181 9.99 Suitable 0.45 MmE Yes NotDry Good No 

182 8 Suitable 0.45 MmE Yes Dry Poor No 

183 9.3 Suitable 0.45 MmE Yes Dry Poor No 

184 9.3 Suitable 0.45 MmE Yes NotDry Good No 

185 8.57 Suitable 0.55 MkE Yes Dry Poor No 

186 8.57 Suitable 0.55 MmE Yes NotDry Good No 

187 8.57 Suitable 0.55 MmE Yes Dry Poor No 

188 8.57 Suitable 0.55 MkE Yes Dry Poor No 

189 8.57 Suitable 0.55 MkE Yes Dry Poor No 

190 8.11 Suitable 0.45 MmE Yes Dry Poor No 

191 8.89 Suitable 0.45 MmE Yes NotDry Good No 

192 9.76 Suitable 0.45 MmE Yes Dry Poor No 

193 9.76 Suitable 0.45 MmE Yes Dry Poor No 

194 8.87 Suitable 0.45 MmE Yes Dry Poor No 

195 8.87 Suitable 0.45 MmE Yes Dry Poor No 

196 14.42 Suitable 0.55 MmE Yes NotDry Good No 
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Appendix A. Continued 

 

NewID AveWidth  StrSlope MMCCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

197 9.71 Suitable 0.45 MmE Yes Dry Poor No 

198 9.71 Suitable 0.35 MmE Yes Dry Poor No 

199 9.71 Suitable 0.35 MmE Yes NotDry Good No 

200 14.74 Suitable 0.40 MmE Yes NotDry Good No 

201 14.74 Suitable 0.40 MmE Yes NotDry Good No 

202 8.1 Suitable 0.40 MmE Yes NotDry Good No 

203 9.17 Suitable 0.40 MkE Yes NotDry Good No 

204 9.17 Suitable 0.40 MkE Yes NotDry Good No 

205 9.51 Suitable 0.40 MkE Yes Dry Poor No 

206 9.51 Suitable 0.40 MkE Yes NotDry Good No 

207 9.51 Suitable 0.40 MkE Yes Dry Poor No 

208 7.12 Suitable 0.40 MkE Yes Dry Poor No 

209 7.41 Suitable 0.40 MkE Yes Dry Poor No 

210 7.41 Suitable 0.40 MkE Yes Dry Poor No 

211 14.13 Marginal 0.40 MkE Yes Dry Poor No 

212 14.13 Marginal 0.40 MkE Yes NotDry Good No 
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APPENDIX B 

 

Case File for Network Using Traced Streamline 

 

NewID AveWidth StrSlope MMCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

1 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

2 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

3 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

4 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

5 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

6 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

7 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

8 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

9 8.24 Marginal 0.35 MkE Yes NotDry Good Yes 

10 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

11 11.85 Suitable 0.1 RtF No NotDry Good Yes 

12 14.74 Suitable 0.5 NoF No NotDry Good Yes 

13 10.71 Suitable 0.55 MkE No NotDry Good Yes 

14 14.74 Suitable 0.5 NoF No NotDry Good Yes 

15 12.15 Suitable 0.55 MkE No NotDry Good Yes 

16 14.95 Suitable 0.75 CdD No NotDry Good Yes 

17 14.95 Suitable 0.75 CdD No NotDry Good Yes 

18 11.3 Suitable 0.8 CdD No NotDry Good Yes 

19 13.7 Suitable 0.8 CdD No NotDry Good Yes 

20 11.3 Suitable 0.8 CdD No NotDry Good Yes 

21 13.7 Suitable 0.8 CdD No NotDry Good Yes 

22 13.7 Suitable 0.8 CdD No NotDry Good Yes 

23 13.7 Suitable 0.8 CdD No NotDry Good Yes 
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Appendix B. Continued 

 

NewID AveWidth StrSlope MMCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

24 13.7 Suitable 0.8 CdD No NotDry Good Yes 

25 13.7 Suitable 0.8 CdD No NotDry Good Yes 

26 13.7 Suitable 0.8 CdD No NotDry Good Yes 

27 11.93 Suitable 0.8 MkE No NotDry Good Yes 

28 11.93 Suitable 0.8 MkE No NotDry Good Yes 

29 12.45 Suitable 0.4 MkE No NotDry Good Yes 

30 12.45 Suitable 0.4 MkE No NotDry Good Yes 

31 12.19 Suitable 0.75 MmF No NotDry Good Yes 

32 12.19 Suitable 0.75 MmF No NotDry Good Yes 

33 10.63 Suitable 0.75 MmF No NotDry Good Yes 

34 10.63 Suitable 0.75 MmF No NotDry Good Yes 

35 13.87 Suitable 0.75 MmF No NotDry Good Yes 

36 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

37 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

38 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

39 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

40 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

41 15.66 Suitable 0.45 MkE Yes NotDry Good Yes 

42 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

43 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

44 12.24 Suitable 0.45 MkE Yes NotDry Good Yes 

45 11.43 Suitable 0.35 MmE Yes NotDry Good Yes 

46 11.85 Suitable 0.1 RtF No NotDry Good Yes 

47 14.95 Suitable 0.75 CdD No NotDry Good Yes 

48 14.95 Suitable 0.75 CdD No NotDry Good Yes 
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Appendix B. Continued 

 

NewID AveWidth StrSlope MMCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

49 13.7 Suitable 0.8 CdD No NotDry Good Yes 

50 13.7 Suitable 0.8 CdD No NotDry Good Yes 

51 11.93 Suitable 0.8 MkE No NotDry Good Yes 

52 11.93 Suitable 0.8 MkE No NotDry Good Yes 

53 11.85 Suitable 0.1 RtF No Dry Good Yes 

54 12.4 Suitable 0.4 MkE No Dry Good Yes 

55 12.4 Suitable 0.4 MkE No Dry Good Yes 

56 12.4 Suitable 0.4 MkE No Dry Good Yes 

57 12.4 Suitable 0.4 MkE No Dry Good Yes 

58 12.45 Suitable 0.4 MkE No Dry Good Yes 

59 12.4 Suitable 0.25 MkE No Dry Good Yes 

60 12.45 Suitable 0.4 MkE No Dry Good Yes 

61 12.45 Suitable 0.4 MkE No Dry Good Yes 

62 12.45 Suitable 0.4 MkE No Dry Good Yes 

63 12.45 Suitable 0.8 MkE No Dry Good Yes 

64 11.93 Suitable 0.8 CdD No Dry Good Yes 

65 11.93 Suitable 0.8 CdD No Dry Good Yes 

66 11.93 Suitable 0.8 CdD No Dry Good Yes 

67 11.93 Suitable 0.8 CdD No Dry Good Yes 

68 15.32 Suitable 0.8 CdD No Dry Good Yes 

69 15.32 Suitable 0.8 CdD No Dry Good Yes 

70 15.32 Suitable 0.8 CdD No Dry Good Yes 

71 13.7 Suitable 0.8 CdD No Dry Good Yes 

72 13.7 Suitable 0.8 CdD No Dry Good Yes 

73 13.7 Suitable 0.8 CdD No Dry Good Yes 
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Appendix B. Continued 

 

NewID AveWidth StrSlope MMCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

74 13.7 Suitable 0.8 CdD No Dry Good Yes 

75 13.7 Suitable 0.8 CdD No Dry Good Yes 

76 13.7 Suitable 0.8 CdD No Dry Good Yes 

77 13.7 Suitable 0.8 CdD No Dry Good Yes 

78 13.7 Suitable 0.8 CdD No Dry Good Yes 

79 13.7 Suitable 0.8 CdD No Dry Good Yes 

80 13.7 Suitable 0.8 CdD No Dry Good Yes 

81 11.3 Suitable 0.8 CdD No Dry Good Yes 

82 10.13 Suitable 0.75 CdD No Dry Good Yes 

83 14.95 Suitable 0.75 CdD No Dry Good Yes 

84 14.95 Suitable 0.75 CdD No Dry Good Yes 

85 14.95 Suitable 0.75 CdD No Dry Good Yes 

86 14.95 Suitable 0.75 CdD No Dry Good Yes 

87 14.95 Suitable 0.75 CdD No Dry Good Yes 

88 14.95 Suitable 0.75 CdD No Dry Good Yes 

89 14.95 Suitable 0.75 CdD No Dry Good Yes 

90 14.95 Suitable 0.75 CdD No Dry Good Yes 

91 14.95 Suitable 0.75 CdD No Dry Good Yes 

92 14.95 Suitable 0.75 CdD No Dry Good Yes 

93 13.55 Suitable 0.75 MmF No Dry Good Yes 

94 12.4 Suitable 0.55 IrF No Dry Good Yes 

95 10.45 Suitable 0.55 MkE No Dry Good Yes 

96 11.06 Marginal 0.55 MkE No Dry Good Yes 

97 10.71 Suitable 0.55 MkE No Dry Good Yes 

98 10.71 Suitable 0.55 MkE No Dry Good Yes 



 

 

 

 

 

6
3
 

Appendix B. Continued 

 

NewID AveWidth StrSlope MMCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

99 10.71 Suitable 0.55 MkE No Dry Good Yes 

100 10.71 Suitable 0.55 MkE No Dry Good Yes 

101 13.16 Suitable 0.55 MkE No Dry Good Yes 

102 13.16 Suitable 0.55 MkE No Dry Good Yes 

103 13.16 Suitable 0.55 MkE No Dry Good Yes 

104 13.16 Suitable 0.55 MkE No Dry Good Yes 

105 13.16 Suitable 0.55 MkE No Dry Good Yes 

106 13.16 Suitable 0.55 MkE No Dry Good Yes 

107 12.31 Suitable 0.25 MkE No Dry Good No 

108 12.31 Suitable 0.25 MkE No NotDry Good No 

109 9.69 Suitable 0.65 MmF No NotDry Good No 

110 9.94 Suitable 0.65 MmF No NotDry Good No 

111 9.94 Suitable 0.65 MmF No Dry Good No 

112 10.66 Suitable 0.65 MmF No Dry Good No 

113 10.66 Suitable 0.65 MmF No NotDry Good No 

114 10.66 Suitable 0.65 MmF No NotDry Good No 

115 10.66 Suitable 0.65 MmF No NotDry Good No 

116 10.66 Suitable 0.65 MmF No NotDry Good No 

117 11.31 Suitable 0.65 MmF No NotDry Good No 

118 11.31 Suitable 0.65 MmF No NotDry Good No 

119 11.31 Suitable 0.65 MmF No NotDry Good No 

120 12.31 Suitable 0.65 MmF No Dry Good No 

121 12.31 Suitable 0.65 MmF No Dry Good No 

122 12.31 Suitable 0.65 MmF No Dry Good No 

123 9.13 Suitable 0.55 MkE Yes NotDry Good No 
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Appendix B. Continued 

 

NewID AveWidth StrSlope MMCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

124 9.13 Suitable 0.55 MkE Yes NotDry Good No 

125 9.13 Suitable 0.55 MkE Yes Dry Poor No 

126 10.05 Suitable 0.55 MkE Yes NotDry Good No 

127 10.05 Suitable 0.55 MkE Yes NotDry Good No 

128 10.05 Suitable 0.55 MkE Yes NotDry Good No 

129 10.11 Suitable 0.55 MkE Yes NotDry Good No 

130 9.05 Suitable 0.55 IrF Yes NotDry Good No 

131 9.05 Suitable 0.55 MkE Yes Dry Poor No 

132 9.05 Suitable 0.55 IrF Yes NotDry Good No 

133 9.05 Suitable 0.55 MkE Yes Dry Poor No 

134 7.56 Suitable 0.55 MkE Yes Dry Poor No 

135 10 Suitable 0.55 MkE Yes Dry Poor No 

136 10 Suitable 0.55 MkE Yes NotDry Good No 

137 7.79 Suitable 0.55 MkE Yes NotDry Good No 

138 7.79 Suitable 0.55 MkE Yes Dry Poor No 

139 11.61 Suitable 0.40 MkE Yes Dry Poor No 

140 9.04 Suitable 0.45 MkE Yes Dry Poor No 

141 9.04 Suitable 0.45 MkE Yes NotDry Good No 

142 9.04 Suitable 0.45 MkE Yes Dry Poor No 

143 8.61 Suitable 0.45 MkE Yes Dry Poor No 

144 9.42 Suitable 0.45 MkE Yes Dry Poor No 

145 9.42 Suitable 0.45 MkE Yes NotDry Good No 

146 8.7 Suitable 0.65 MkE Yes NotDry Good No 

147 8.7 Suitable 0.65 MkE Yes NotDry Good No 

148 9.56 Suitable 0.65 MkE Yes Dry Poor No 
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Appendix B. Continued 

 

NewID AveWidth StrSlope MMCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

149 9.56 Suitable 0.65 MkE Yes NotDry Good No 

150 9.56 Suitable 0.65 MkE Yes NotDry Good No 

151 9.56 Suitable 0.65 MkE Yes NotDry Good No 

152 9.56 Suitable 0.65 MkE Yes NotDry Good No 

153 12.41 Suitable 0.55 MkE Yes Dry Poor No 

154 12.41 Suitable 0.65 MkE Yes Dry Poor No 

155 12.41 Suitable 0.55 MkE Yes NotDry Good No 

156 12.41 Suitable 0.65 MkE Yes Dry Poor No 

157 10.27 Suitable 0.55 MkE Yes NotDry Good No 

158 10.27 Suitable 0.55 MkE Yes NotDry Good No 

159 10.27 Suitable 0.55 MkE Yes Dry Poor No 

160 8.29 Suitable 0.55 MkE Yes Dry Poor No 

161 8.29 Suitable 0.55 MkE Yes Dry Poor No 

162 13.83 Suitable 0.45 MkE Yes NotDry Good No 

163 13.83 Suitable 0.45 MkE Yes NotDry Good No 

164 14.11 Suitable 0.4 MmE Yes NotDry Good No 

165 14.11 Suitable 0.40 MmE Yes NotDry Good No 

166 14.62 Suitable 0.55 MmE Yes Dry Poor No 

167 14.62 Suitable 0.55 MmE Yes NotDry Good No 

168 10.99 Suitable 0.35 MmE Yes Dry Poor No 

169 10.99 Suitable 0.35 MmE Yes NotDry Good No 

170 10.36 Suitable 0.25 MmE Yes Dry Poor No 

171 10.36 Suitable 0.25 MmE Yes NotDry Good No 

172 10.42 Suitable 0.25 MmE Yes Dry Poor No 

173 10.42 Suitable 0.25 MmE Yes Dry Poor No 
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Appendix B. Continued 

 

NewID AveWidth StrSlope MMCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

174 10.42 Suitable 0.25 MmE Yes NotDry Good No 

175 10.42 Suitable 0.25 MmE Yes NotDry Good No 

176 10.42 Suitable 0.25 MmE Yes Dry Poor No 

177 10.42 Suitable 0.25 MmE Yes NotDry Good No 

178 6.85 Poor 0.45 MmE Yes Dry Poor No 

179 6.85 Poor 0.45 MmE Yes NotDry Good No 

180 7.55 Suitable 0.25 MmE Yes Dry Poor No 

181 9.99 Suitable 0.45 MmE Yes NotDry Good No 

182 8 Suitable 0.45 MmE Yes Dry Poor No 

183 9.3 Marginal 0.45 MmE Yes Dry Poor No 

184 9.3 Marginal 0.45 MmE Yes NotDry Good No 

185 8.57 Suitable 0.55 MkE Yes Dry Poor No 

186 8.57 Suitable 0.55 MmE Yes NotDry Good No 

187 8.57 Suitable 0.55 MmE Yes Dry Poor No 

188 8.57 Suitable 0.55 MkE Yes Dry Poor No 

189 8.57 Suitable 0.55 MkE Yes Dry Poor No 

190 8.11 Suitable 0.45 MmE Yes Dry Poor No 

191 8.89 Suitable 0.45 MmE Yes NotDry Good No 

192 9.76 Suitable 0.45 MmE Yes Dry Poor No 

193 9.76 Suitable 0.45 MmE Yes Dry Poor No 

194 8.87 Suitable 0.45 MmE Yes Dry Poor No 

195 8.87 Suitable 0.45 MmE Yes Dry Poor No 

196 14.42 Suitable 0.55 MmE Yes NotDry Good No 

197 9.71 Suitable 0.45 MmE Yes Dry Poor No 

198 9.71 Suitable 0.35 MmE Yes Dry Poor No 
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Appendix B. Continued 

 

NewID AveWidth StrSlope MMCFA SoilType PartialBar WaterYr PassCond ReddsPresent 

199 9.71 Suitable 0.35 MmE Yes NotDry Good No 

200 14.74 Suitable 0.4 MmE Yes NotDry Good No 

201 14.74 Suitable 0.4 MmE Yes NotDry Good No 

202 8.1 Suitable 0.4 MmE Yes NotDry Good No 

203 9.17 Suitable 0.4 MkE Yes NotDry Good No 

204 9.17 Suitable 0.4 MkE Yes NotDry Good No 

205 9.51 Suitable 0.4 MkE Yes Dry Poor No 

206 9.51 Suitable 0.4 MkE Yes NotDry Good No 

207 9.51 Suitable 0.4 MkE Yes Dry Poor No 

208 7.12 Suitable 0.4 MkE Yes Dry Poor No 

209 7.41 Suitable 0.4 MkE Yes Dry Poor No 

210 7.41 Suitable 0.4 MkE Yes Dry Poor No 

211 14.13 Suitable 0.4 MkE Yes Dry Poor No 

212 14.13 Suitable 0.4 MkE Yes NotDry Good No 
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