Summary of VSEPR Molecular Geometries

Electron Groups	Lone Pairs	Bonds	Geometry	Examples
2	0	2	Linear	BeCl ₂
3	0	3	Trigonal planar	BF₃
3	1	2	Bent	SO ₂
4	0	4	Tetrahedral	CH ₄
4	1	3	Trigonal pyramidal	NH ₃
4	2	2	Bent	H ₂ O
5	0	5	Trigonal bipyramidal	PCl₅
5	1	4	See-saw	SF₄
5	2	3	T-Shaped	CIF₃
5	3	2	linear	l3 ⁻
6	0	6	Octahedral	SF ₆
6	1	5	Square pyramidal	SbCl ₅ ²⁻
6	2	4	Square planar	XeF ₄

Valence Bond Terminology:

Overlap: two orbitals existing in the same region of space

lp: lone pair of electrons (non-bonding)

bp: bonding pair of electrons (result of orbital overlap)

Central atom: the atom of concern in a molecule

hybridization: the linear combination of atomic orbitals

hybrid orbital: bonding orbitals that arise from the mixing of AO's.σ-bond: (sigma bond) overlap of orbitals along the bond axis

 π -bond: (pi bond) overlap of orbitals above and below the bond axis.

single bond: one σ -bond

double bond: one σ-bond & one π -bond *triple bond:* one σ-bond & two π -bonds