Please read section 5.10 and the following notes (not covered in class) on titration and standardization. This material pertains to experiment 5 and your HW.

Standard Solutions:

- Some solutions cannot be accurately made by weight and dilution methods if the solute is impure or unstable.
- When this is the case, one can make up a solution of approximate concentration then "*Standardize*" the solution against a "*Standard*" compound that reacts with the solute in solution.
- A standard compound is one that is very stable with a known molar mass that yields a necessary number of sig. figs. (4 or more)
- To standardize a solution, one performs a "*Titration*" where a measured volume of the solution is added to a known amount of the standard.
- An "*Indicator*" is added to signal the point where the moles of standard = moles of solute reacted (*Endpoint*), knowing moles and volume, one can compute the concentration of the solution.

Next page: acid/base titrations overview and a standardization example

Jane (again not to be outdone by her brother) prepares a solution of NaOH(aq). She performs a standardization of the solution using KHP as the standard.			
Determine the [OH ⁻] from the data collected:			
mass KHP + flask:	95.3641 g	final buret reading:	30.12 mL
mass empty flask:	95.0422 g	initial buret reading:	1.56 mL
mass KHP:	0.3219 g	vol. NaOH:	28.56 mL
$[OH^{-}] = \frac{\text{mols OH}^{-}}{\text{L of solution}} = \frac{\text{mol KHP}}{\text{L titrated}}$			
[OH ⁻] = [NaOH] <i>Strong Electrolyte!!!</i>			
2-23-07 Chem. 1A S2007 J.Mack			19

