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A procedure is presented for caiculating the hvdraulic conductivity of an aquifer near a weli from the
rate of rise of the water level in the well after a certain volume of water 1s suddeniy removed. The
caleulation is based on the Thiem equation of steady state low to a well. The effective rudius R. over
which the head ditference between the equiiibrium water table in the aquifer und the water level in the well
is dissipated was evaluated with a resistance network analog for a wide runge of system geometries. An
empirical equation relating R, to the geometry of the well and aquifer was derived. The technique s
applicable to completely or partially penetrating wells in uncontined aquifers. It can also be used for
confined aquifers that receive water from the upper confining layer. The method's results are compauble
with those obtained by other techniques for overlapping geometries.

With the slug test the hydraulic conductivity or trans-
missibility of an aquifer is determined from the rate of rise of
the water level in a well after a certain volume or slug” of
water is suddenly removed from the well. The slug test is
simpler and quicker than the Theis pumping test because
observation wells and pumping the well are not needed. With
the slug test the portion of the aquifer ‘sampled” for hydraulic
conductivity is smaller than that for the pumping test even
though with the latter. most of the head loss also occurs within
a relatively small distance of the pumped weil and the resulting
transmissibility primarily reflects the aquifer conditions near
the pumped well.

Essentially instantaneous lowering of the water level in a
well can be achieved by quickly removing water with a bailer
or by partially or compieteiy submerging an object in the
water, letting the water level reach equilibrium. and then
quickly removing the object. If the aquifer is very permeable.
the water level in the well may rise very rapidly. Such rapid
rises can be measured with sensitive pressure transducers and
fast-response strip chart recorders or x-y plotters. Also it may
be possible to isolate portions of the perforated or screened
section of the well with special packers for the slug test. This
not only reduces the inflow and hence the rate of rise of the
water level in the well. but it also makes it possible to deter-
mine the vertical distribution of the hydraulic conductivity.
Special packer techniques may have to be developed to obtain
a good seal. especially for rough casings or perforations. Effec-
tive sealing may be achieved with relatively long sections of
inflatable stoppers or tubing. The use of long sections of these
materials would also reduce leakage flow from the rest of the
well to the isolated section between packers. This flow can
occur through gravel envelopes-or other permeable zones sur-
rounding the casing. Sections of inflatable tubing may have to
be long enough to block off the entire part of the well not used
for the slug test. High inflation pressures should be used to
minimize volume changes in the tubing due to changing water
pressures in the isolated section when the head is lowered.

So far. solutions for the slug test have been developed only
for compietely penetrating wells in confined aquifers. Cooper
etal. [1967] derived an equation for the risé or fall of the water
level in a well after sudden lowering or raising. respectively.
Their equation was based on nonsteady flow to a pumped.
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completely penetrating well. and the solution was expressed as
a series of "type curves’ against which observed rates of water
level rises were matched. Values for the transmissibility and
storage coefficient were then evaluated from the curve parame-
ter and horizontal-scale position of the type curve showing the
best fit with the experimental data. Skibitzke [1958] developed
an equation for calculating transmissibility from the recovery
of the water level in a well that was repeatedly bailed. The
technique is limited to wells in confined aquifers with suf-
ficiently shallow water levels to permit short time intervals
between bailing cycles [Lohman, 1972).

To use the slug test for partially penetrating or partially
perforated wells in confined or unconfined aquifers, some solu-
tions developed for the auger hole and piezometer techniques
to measure soil hydraulic conductivity [Bouwer and Jackson,
1974] may be empioyed. However. the geometry of most
groundwater wells is outside the range in geometry covered by
the existing equations or tables for the auger hole or piezome-
ter methods. For this reuason. theory and equations are pre-
sented in this paper for slug tests on partially or completely
penetrating wells in unconfined aquifers for a wide range of
geometry conditions. The wells may be partially or completely
perforated. screened. or otherwise open along their periphery.
While the solutions are developed for unconfined aquifers,
they may ulso be used for slug tests on wells in confined
aquifers if water enters the aquifer from the upper confining
layer through compression or leakage.

THEORY

Geometry and symbols of a well in an unconfined aquifer
are shown in Figure 1. For the slug test the water level in the
well is suddenly lowered. and the rate of rise of the water level
is measured. The flow into the well at a particular value of y
cun be culculated by modifying the Thiem equation to

14

Q = 2rKL R n
where Q is the flow into the well (length®/time). K is -the
hydraulic conductivity of the aquifer (length/time). L is the
height of the portion of well through which water enters
(height of screen or perforated zone or of uncased portion of
well), y is the vertical distance between water level in well and
equilibrium water table in aquifer. R, is the effective radius
over which y is dissipated. and 7, is the horizontal distance
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Fig. 1. Geometry and symbols of a partially penetrating, partially
perforated well in unconfined aquifer with gravei pack or deveioped
zone around perforated section.

from well center to original aquifer (well radius or radius of
casing plus thickness of gravel envelope or developed zone).

The terms L, y, R., and ry are all expressed in units of
length. The effective radius R, is the equivalent radial distance
over which the head loss y is dissipated in the flow system. The
value of R, depends on the geometry of the flow system. and it
was determined for different values of H. L D ,andr, (Figure
1) with a resistance network analog, as will be discussed in the
next section. Equation (1) is based on the assumptions that (1)
drawdown of the water table around the well is negligible, (2)
flow above the water table (in the capillary fringe) can be
ignored. (3) head losses as water enters the weil (well losses)
are negligible. and (4) the aquifer is homogeneous and iso-
tropic. These are the usual assumptions in the development of
equations for pumped hole techniques [Bouwer and Jackson,
1974, and references therein].

The vaiue of r, in (1) represents the radial distance between
the undisturbed aquifer and the well center. Thus », should
include gravei envelopes or ‘developed’ zones if they are much
more permeable than the aquifer itself (Figure 1).

The rate of rise. dy/dt. of the water level in the well after
suddenly removing a slug of water can be related to the inflow
Q by the equation

dy/dt = - Q/xr? (2)

where 77,2 is the cross-sectional area of the well where the
water level is rising. The minus sign in (2) is introduced be-
cause y decreases as ¢ increases.

The term r. is the inside radius of the casing if the water level
is above the perforated or otherwise open portion of the well.
If the water level is rising in the perforated section of the well,
allowance shouid be made for the porosity outside the weil
casing if the hydraulic conductivity of the gravel envelope or
developed zone is much higher than that of the aquifer. [n that
case the (open) porosity in the permeable zone must be in-
cluded in the cross-sectionai area of the well. For example, if
the radius of the perforated casing is 20 ¢m and the casing is

surrounded by a 10-cm permeable gravel envelope with a

porosity of 30%. 7. should be taken as [20°0 + 0.30(302 —

20%)]"2 = 23.5 cm to obtain the Cross-sectional area of the wei|

that reiates Q to dy/dr. The vaiue of 7., for this well section is

30 cm. '
Combining (1) and (2) yields

1 2KL

-dy = ——

y 7 In (Ro/ry) & @
which can be integrated to

2KL:
= ——
Iny 7 n RD constant “4)

Applying this equation between limits Yoatt =0and y, at¢
and solving for K yield

2
re In (R./r,) 1 in 22 %)

K= 3L 3 Py,

This equation enables X to be calculated from the rise of the
water level in the well after suddenly removing a slug of water
from the well. Since X, es Fwy Ry and L in (5) are constants,
(1/1) In vo/y, must also be constant. Thus field data should
yield a straight line when they are piotted as In Ve versus ¢, The
term (1/1) In po/y, in (5) is then obtained from the best-fitting
straight line in a plot of In Y versus ¢ (see the example). The
value of In R, /r, is dependent on A, D, L, and 7y, and can be
evaluated from the analog results presented in the next section.
The transmissibility T of the aquifer is caiculated by muiti-
plying (5) by the thickness D of the aquifer or

Dr.’In (R./r,) 1 28 (6)
2L t Ve
This equation is based on the assumption that the aquifer is
uniform with depth.
Equations (5) and (6) are dimensionally correct. Thus K and
T are expressed in the same units as the length and time
parameters in the equations.

T =

EvaLuation oF R,

Values of R,. expressed as In R./r,. were determined with
an electrical resistance network analog for different values of
rws L, H, and D (Figure 1), using the same assumptions as
those for (1). An axisymmetric sector of | rad was simulated
by a network of electrical resistors. The vertical distance be-
tween the nodes was constant. but the radial distance between
nodes increased with increasing distanze from the center line
(Figure 2). This yielded a network vith the highest node
density near the well, where the head loss was greatest. and a
decreasing node density toward the ouger reaches of the sys-
tem. For a more detailed discussion of graded networks for
representing axisymmetric flow systems. see Liebmann [1950]
and Bouwer [1960].

The radial extent of the medium represented on the analog
was more than 60.000 times the largest 7, vaiue used in the
analyses. Thus the radial extent of the analog system was
essentially infinite, as evidenced by the fact that a reduction in
radial extent by severai nodes did not have a measurable effect

-on the observed value of R,.

The value of R, for an infinitely deep aquifer (D = =) was
determined by simulating an impermeabie and then an in-
finitely permeabie layer at a certain vaiue of D. If this value of
D is taken to be sufficiently large, the flow in the system when
the layer at D is taken as being impermeable is oniy slightly
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Fig. 2. Node arrangement (dots) for resistance network analog and potential distribution (indicated as percentuges on
equipotentials) for system with L/7, = 625. H/r, = 1000. and D/r, = 13500. The numbers on the left and at the top of the

figure are arbitrary length units (note breaks in horizontal scale).

less than the flow when the layer is taken as being infinitely
permeabie. The average of the two flows can then be taken as a
good estimate of the flow that would occur if the aquifer were
represented on the analog as being uniform to infinite depth
[Bouwer, 1967]. This average flow was used to calculate R, for
D

@©

The analog analyses were performed by simulating a system
with certain values of r,, . and D. The electrical current
entering the "weil’ was then measured for different values of L.
ranging from near A to near 0. This was repeated for other
values of r,, H. and D. The condition where £ = & couid not
be simuiated on the analog because it would mean a short
between the water table as the source and the well as the sink.
The electrical current flow in the analog was converted to
volume per day. and In R,/r, was evaluated with (1) for each
combination of #,, A, L. and D used in the analog.

For a given geometry described by 7y, A, and D. the current
flow Q, into the simulated well varied essentially linearly with
L and could be described by the equation

Q=mL +n )]

- Because of the’linean'ty between Q, and L the results of the
analyses could be extrapolated to the condition L = H. The
values of m in (7) appeared to vary inversely with In #/r,. The
values of n varied approximately linearly with In [(D - H)/
7.}, the slope 4 and interc.pt 8 in these relations being a func-
tion of L/r,. This enabled the derivation of the following
empirical equation refating In R./r, to the geometry of the

system:
- -1
R, _ ,- LL__ A4+ Bl(D H)/r.,]] -
re  Lin(&/m) L/r,

In this equation. 4 and B are dimensionless coefficients that
are functions of L/r,, as shown in Figure 3. If D >> H. an
increase in D has no measurable effect on in R./r,. The analog

results indicated that the effective upper limit of In [(D - H)/
ry] is 6. Thus if D is considered infinity or (D — H)/r, is so
large that In [(D — H)/r,] is greater than 6. a value of 6
should still be used for the term In (D = H)/r,] in (8).

If D = H. theterm in [(D — H)/r,] in (8) cannot be used.
The analog resuits indicated that for this condition. which is
the case of a fully penetrating well. (8) should be modified to

)-l
where C is a dimensionless parameter that is a function of
L/ry as shown in Figure 3.

Equations (8) and (9) yield values of In R./r,, that are within
10% of the actual value as evaluated by analogif L > 0.4H and
within 23% if L << H (for example. L = 0.1H).

The analog analyses were performed for wells that were
closed at the bottom. Occasionally, however. wells with open
bottoms were aiso simulated. The flow through the bottom
appeared to be negligible for ail values of 7, and L used in the
analyses. If L is not much greater than 7, (for example, L/r,
<< 4). the system geometry approaches that of a piezometer
cavity [Bouwer and Jackson, 1974], in which case the bottom
flow can be significant. Equations (8) and (9) can also be used
to evaluate In R./7, if a portion of the perforated or otherwise
open part of the well is isolated with packers for the slug test.

Equipotentials for the flow system around a partially pene-
trating, partially perforated well in an unconfined aquifer after
lowering the water level in the well are shown in Figure 2. The
numbers along the symmetry axis and the water table repre-
sent arbitrary length units. The numbers on the equipotentials
indicate the potential as a percentage of the total head differ-
ence between the water table (100%) and the open portion of
the well (0%) shown as a dashed line.

The value of R, for the case in Figure 2 is 96.7 length units.
As shown in the figure, this corresponds approximately to the

C
L:rs

1.1 +

9
In (H/r,) @

InR./r, = <
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Fig. 3. Curves relating coefficients 4. 8, and C to Lir,.

85% equipotential when R, is laterally extended from the cen-
ter of the open portion of the well. Thus most of the head loss
in the flow system occurs in a cylinder with radius R,. which is
indicative of the horizontal extent of the portion of the aquifer
sampled for K or T. The vertical extent is somewhat greater
than L, as indicated by, for example, the 80% equipotential in
Figure 2.

To estimate the rate of rise of the water level in a well after it
is suddenly lowered. (5) can be written as

= — In= 1
5K lnr" Ix'xyf (10
By taking y, = 0.9v,. (10) reduces to
r R,
tos, = 0.0527 T o an

where to9q is the time that it takes for the water levei to rise
90% of the distance to the equilibrium levei, By assuming a per-
meable aquifer with K = 30 m/day, a well with r- =0.2m and
L =10m,andIn(R./r,) = 3, (1) yields t90q = 1.825. Thus if
Yo is taken as 30 cm. it takes 1.8 s for the water level to rise 27
cm. another 1.8 s for the next 2.7 cm (50% of the remaining 3
cm), and another 1.8 s for the next 0.27 cm. or a total of 5.4 s
for a rise of 29.97 cm. Measurement of this fast rise requires a
sensitive and accurate transducer and a fast-response recorder.
The rate of rise can be reduced by allowing groundwater to
enter through only a portion of the open section of the well, as
can be accomplished with packers.

For a moderately permeable aquifer with, for example, K =
| m/day, a well with re=0.Imand L = 20 m, and In(Re/ry)
=5.(l1)yields ¢ = I1.45. In this case. it would take the water
level 22.8 s to rise from 30 cm t0 0.3 cm below static level.

ExaMPLE

A slug test was performed on a cased well in the alluvial
deposits of the Salt River bed west of Phoenix. Arizona. The
well, known as the east weil.'is located about 20 m east of six

rapid infiltration basins for groundwater recharge with sewage
effluent [Bouwer, 1970]. The static water table was at a depth
of3m.D=80m, 4 = 55m.L =4.56m, 7e =0.076 m.and r,
was taken as 0.12 m to0 allow for development of the aquifer
around the perforated portion of the casing. A Statham
PMI3ITC pressure transducer was suspended about | m be-
low the static water leve} in the well {(when trade names and
company names are included, they are for the convenience of
the reader and do not imply preferential endorsement of.a
particular product or company over others by the U.S. De-
partment of Agriculture). A solid cylinder with a volume
cquivalent to a 0.32-m change in water level in the well was
also placed below the water level. When the water level had
returned to equilibrium, the cvlinder was quickly removed.
The transducer output. recorded on a Sargent millivolt re-
corder. yielded the y-r relationship shown in Figure 4 with y
plotted on u logarithmic scale. The straight-line portion is the
valid part of the readings. The actual Yo value of 0.29 m
indicated by the straight line is ciose to the theoretical value of
0.32 m calculated from the displacement of the submerged
cylinder.

Extending the straight line in Figure 4 shows that for the
arbitrarily selected ¢ valye of 20's. y = 0.0025 m. Thus (1/t) In
Yo/ye = 0.238 s-*. The value of L/r, = 38. for which Figure 3
yields 4 = 2.6 and 8 = 0.42. Substituting these values into 8)
and using the maximum valye of 6 for In (D = H)/r,] (since
In [(D = H)/r,] for the well exceeds 6) yield In (R./r,) = 2.37.
Equation (5) then gives K = 0.00036 m/s = 31 m/day. This
value agrees with K values of 10 and 53 m/day obtained
previously with the tube method on two nearby observation
wells [Bouwer, 1970]. These K values were essentially point
measurements on the aquifer immediately around the wej|
bottoms, which were at depths of 9.1 and 6.1 m, respectively.

COMPARISONS

Piezometer method. The geometry to which (8) and (9) and
the coefficients in Figure 3 apply overlaps the geometry of the
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piezometer method at the lower values of L.7,. With the
piezometer method a cavity is augered out in the soil below a
piezometer tube. The water level in the tube is abruptly
lowered. and K of the soil around the cavity is calculated from
the rate of rise of the water level in the tube [Bouwer and
Jackson, 1974]. The equation for K is
el 1

== -
K AY‘ Y

(12)

where Ay is a geometry factor with dimension of length. Val-
ues of Ay were evaluated with an electrolytic tank analog by
Youngs [1968], whose resuits were expressed in tabular form as
Ay/r, for different values of L/r, (ranging between 0 and 8),
(H = L)/ry, and (D - H)/r,.

Taking a hypothetical case where L/r, = 8. H/r, =12, and
D/r, = 16, K calculated with (5) is 18% below X calculated
with (12). This is more than the 10% error normally expected
with (8) and (9) for the L/H value of 0.67 in this case. The
larger discrepancy may be due to the difference in method-
ology, or to the fact that the L/r,, value is close to the lower
limit of the range covered on the resistance network analog.

An approximate equation for calculating X with the pie-
zometer method was presented by Huorsiev [195] ]. The equa-
tion, which is based on the assumptions of an ellipsoidal cavity
or well screen and infinite vertical extent (upward and down-
ward) of the flow system, contains a term (I + (L/2r,)7]%2.
For most well-slug-test geometries, L/2r, will be sufficiently
large to permit replacement of this term by L/2r,. In that case,
however. Hvorslev's equation for Q yields R, = L, which is not
true. In reality, R, is considerably less than L. For example, if
L=40m.r, =04m, H=80m.and D = =, (8) shows that
R. = 11.9 m. which is much less than the value of 40 m
indicated by Hvorslev's equation. However, since the calcu-
lation of K is based on In (R./r,) as shown by (5), the error in
K is less than the error in R, (i.e., 36 and 236%, respectively, in
this case).

I, for the above example, the top of the well screen or cavity
had been taken at the same level as the water table (H =40m),
R, would have been 8.6 m and Hvorslev's equation would have
vielded a K value that is 530% higher than K given by (5). The
lareer error is probably due to Hvorslev's assumption of in-
finite vertical (upward) extent of the flow system. which is not
met when the cavity is immediately below the water table.
Using Hvorslev's equation for cavities immediately below a
confining layer would increase the error to 73%, but this, of
course. is due to the fact that a water table is not a solid
boundary. Hvorslev's equation for the confining layer case can
be shown to yieid R, = 2L.

Avger hole method. The analog analyses for (8) and (9) and
Figure 3 were performed for L < H. because short circuiting
between the water table and the weil prevented simuiation of
the case where L = . If the analog results are extrapolated to
L = H. however. the geometry of the system in Figure |
becomes similar to that of the iuger hole technique, for which
a number of equations and graphs have been developed to
calculate K from the rise of the water level in the well (Bouwer
and Jackson, 1974). Boast and Kirkham [1971], for example.
developed the equation ’

K= Cox 3= (13)

Az
where Cgx was determined mathematicaily and expressed in
tubular form for various values of L/r,, (D — H)/r,, and
Yo/ H. Since the rate of rise of the water level in the hole after
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Fig. 4. Plot of y versus ¢ for slug test on east weil.

the removal of a siug of water decreases with decreasing y,
Ay/At is not a constant and the value of K obtained with this
procedure depends on the magnitude of Ay used in the field
measurements. The general rule is that Ay should be relatively
small.

Taking a hypothetical case where y, = 2.5 m. ye=24m. A
=10s.L=H=35m.D=6m.andr, =0.1 m, (5)yieldsa K
value that is 36% lower than K calculated with (13). However,
if ye is taken as 0.5 m, which should give ¢ = 394 s according
to the theory that (1/¢) In y,/y, is constant, the K value yielded
by (5) is 26% higher than X obtained with (13). If y, is taken as
0.9 m, (5) and (13) give identical resaits.

Slug test on wells in confined aquifers. The confined aquifer
for which the slug test by Cooper et al. [1967] was developed is
an aquifer with an internal water source, for example, recharge
through aquitards or compression of confining layers or other
material. This situation is similar to that of the unconfined
aquifer presented in this paper because the water table is
considered harizontal, like the upper boundary of a confined
aquifer, and the water table is a plane source. Thus K or T
calculated with (5) or (6) should be of the same order as X
calculated with the procedure of Cooper er al. [1967], which
involves plotting the rise of the water level in the well and
finding the best fit on a family of type curves. Cooper et al.
(1967] presented an example of the calculation of T for a well
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withr. =7, =0.076 mand £ = 98 m. The resuiting value of T
was 45.8 m*/day. Values of D and A for this weil were not
given. However, since the wel] was 122 m deep and completely
penetrating (at least theoretically), D and & must have been
between 98 and 122 m. Assuming that both D and & were 100
m. (6) yields T = 62.8 m?/day, which is compatibie with T
obtained by Cooper et al.

CoNcLusioNs

The hydraulic conductivity of an aquifer near a well can be
calculated from the rise of the water level in the well after a
slug of water is suddenly removed. The calculation is based on
the Thiem equation, using an effective radius R, for the dis-
tance over which the head difference between the equilibrium
water tabie in the aquifer and the water level in the well is
dissipated. Values of R, were evaluated by electrical resistance
network analog. An empirical equation was then developed to
relate R, to the geometry of the system. This equation is
accurate to within 10-25%, depending on how much of the
well below the water table is perforated or otherwise open. The
technique is applicable to partially or completely penetrating
wells in unconfined aquifers. It can also be used to estimate the
hydraulic conductivity of confined aquifers that receive water
from the upper confining layer through recharge or compres-
sion.

The vertical distance between the rising water level in the
well and the equilibrium water table in the aquifer must yield a
straight line when it is plotted on a logarithmic scale against
time. This can be used to check the validity of field measure-
ments and to obtain the best-fitting line for calculating the
hydraulic conductivity, Permeable aquifers produce rapidly
rising water levels that can be measured with fast-response
pressure transducers and strip chart recorders or x-y plotters.
The portion of the aquifer sampled for hydraulic conductivity
with the slug test is approximately a cylinder with radius R,
and a height somewhat larger than the perforated or otherwise
open section of the well. :

Hydraulic conductivity values obtained with the proposed
slug test are compatible with those yielded by the auger hole
and piezometer techniques where the geometries of the systems
overlap. and by a slug test for completely penetrating welis in
confined aquifers.
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