

Good Morning!

• Let's start with some science!

What's our goal here?

- Provide an example of a science lesson with literacy and dialogue strategies integrated throughout.
- Provide a model of engaging science and a sample of teacher talk that encourages student engagement.
- Give you some ideas for inserting strategies that address Common Core standards (S&L, R, W) and engaging science strategies into your lessons.

What we AREN'T trying to do:

- Teach you science content for your specific grade level.
- Provide a packaged lesson for every grade level.
- Dictate to you how to teach.
- We just want to enlarge your toolbox for teaching.

Rules of Engagement

- Be considerate and respectful in language and tone.
- Make sure everyone has a chance to express their ideas.
- Begin speaking by paraphrasing what the last speaker said, then transition to your comments.
- Try not to steal anyone's "Aha!" moment by telling them your answers—instead, ask questions that will help guide the person to these ideas.

Sample lesson

- I know this is not your standards.
- Electrical circuits WERE in the old 4th grade standards & then not again until physics.
- In NGSS, circuits are in 4th, 8th and physics.
- Our goal is to look at the STRUCTURE of the lesson, not the content.

Let's try it.

- Groups of 4 people.
- Read the Doogie & Kyle scenario
- Think silently about their ideas. Who do you agree with more?

Time to process

- We'll use a Structured Think Pair Share protocol
- Draw a chart like this:

THINK	PAIR
Your ideas go here.	Listen to your partner and record their ideas here.

SHARE

Talk with your partner to come to some common understanding, and write your joint ideas here.

Preassessment: Agree/Disagree

- Find your Thinking About Electricity handout.
- Read each statement. Mark agree, disagree, it depends or not sure.
- Then write a short sentence about your thinking.
- Do all three statements without discussion.

Paraphrase Passport

- First person talks for **one** minute.
- Next person paraphrases, then talks about their own idea.
- Continue around the circle (paraphrase ONLY the person before you, NOT the whole circle)

 When it comes back to the first person, she paraphrases the last person.

Reactions to paraphrasing? Reactions to A&D?

Now let's investigate

- Batteries and Bulbs handout
- First, assign roles in the group of 4.
 - Recorder
 - Reporter
 - Materials Manager
 - Encourager
- Explicit roles increase participation and equity.

Ready to explore!

- Your group will get two bags, one per pair. Please do not pool the two bags for the whole group yet. Each bag has:
 - 2 batteries
 - 2 holiday lights
 - 1 piece of wire
- Your job: figure out what the rules are in lighting up the light bulbs.
- You have **5 minutes** to work.
- Record the rules on your whiteboard.

Remember...

- Materials manager gets the stuff
- Recorder (or their designee) writes your rules on the whiteboard.
- Encourager makes sure everyone gets to handle the materials, and that everyone is contributing.
- Reporter (or their designee) will share your results when you are done.

What rules did we find?

Now you get to ask the question

- Think about the Doogie & Kyle problem:
 - One string of lights was plugged in but no bulbs lit up.
 - One string had all the bulbs but one lit up.
 - Kyle thought a broken bulb made the whole string not light up
 - Doogie thought the electricity in the dark string had gotten used up.

Ask a question that will help us solve this problem

- You can use the materials you have plus:
 - More bulbs
 - More batteries
 - Different sizes of batteries
 - Extra wire
 - ???? Whatever we can scrounge
- On half your whiteboard, write your question and draw the experiment you plan to run. Show it to us to get your new stuff.

As you experiment...

- Record your observations on the other half of the board.
- Write a first-draft explanation of what you think is happening.
- Remember, everyone gets to use the materials and contribute ideas.
- You have 10 minutes to play.

What can we add to our rules now?

Now let's do some reading

- Find your text on series and parallel circuits.
- Feel free to use the highlighters as your read.
- Look for answers to these questions:
 - How are the wires arranged in each kind of circuit?
 - Does the electricity travel all on the same path or on different paths?
 - What happens if a light bulb in the circuit burns out?

Now let's process the reading

- In your group, use the graphic organizer to sort out these ideas:
 - Things that are true of just series circuits
 - Things that are true of just parallel circuits
 - Things that are true of both kinds of circuits

Did you already make each kind of circuit?

- In your group make one series circuit with more than one light bulb.
- In your group, make one set of parallel circuits with more than one light bulb.
- Are all the rules the same for both kinds of circuits?

Now we're ready to school Doogie and Kyle

- Write a letter to Doogie and Kyle solving their problem with the holiday lights.
- Use the graphic organizer to build your arguments.
- We're not going to write the final letter
 just talk it through in your group.

Science Literacy Framework

- Four elements:
 - Engaging Science
 - Purposeful Reading
 - Productive Dialogue
 - Meaningful Writing
- All the elements interact and are interconnected.
- Strategic thinking throughout all the elements advance the learning goals.

Engaging Science:

- Involves students in sense-making
- Opportunities to figure something out
- Applying ideas in a new context
- Involves students in the eight Science and Engineering Practices of the Next Generation Science Standards

Purposeful Reading:

- Students making sense of text that strategically supports the learning.
- Text has sufficient scaffolds for students.
- Students using text as evidence to support claims.
- Using a variety of text.

Productive Dialogue

- Students using talk to support sensemaking and scientific reasoning.
- Students might be making sense of a science experience, prior knowledge, or text.
- Dialogue is structured and scaffolded.
- Students are accountable for a talk task – there is an expected product.

Meaningful writing

- Using writing to organize thinking.
- Constructing arguments:
 - Claim
 - Explanation
 - Evidence
- Taking a stance.
- Both writing-to-learn and formal writing.

Deconstructing the Lesson

Engaging Science	Productive Dialogue	Purposeful Reading	Meaningful Writing
Context in real life problem	Roles	Graphic Organizer	Graphic Organizer
Anticipatory set (A&D) to activate prior knowledge	Rules of engagement	Guiding questions	Persuasive writing
Guided inquiry (student- centered discourse)	Structured Think-Pair- Share	Informational text	Arguments with evidence
l do one, you do one	Paraphrase Passport	Text-based evidence	Writing to learn as well as formal writing